RATHINAM COLLEGE OF ARTS AND SCIENCE DEPARTMENT OF MATHEMATICS

M.SC MATHEMATICS - COURSE OUTCOME

	Semester-I	
	Recall the basic concept of Group Theory.	
	Explain the concept of Ring Theory.	
Algohno	Apply the concept of Fields and Roots of polynomials.	
Algebra	Examine the concept of finite Fields.	
	Compare the concept of Linear Transformations.	
	Develop the knowledge on applying finite fields, and Linear transformations.	
	Recall the basic concept of Riemann Stieltjes Integral.	
	Understand the concept of Convergence and Continuity.	
	Apply the concept of Functions Of Several Variables.	
Real Analysis	Examine the concept of Lebesgue Measure.	
	Explain the concept of Lebesgue Integral.	
	Discuss about theory of Lebesgue integration, Riemann integration and	
	properties	
	Recall the basic concept of Second order linear equations.	
	Demonstrate the concept of Existence and Uniqueness Theorem.	
Ordinary	Apply the concept of Non-homogeneous linear systems.	
Differential	Analyze the concept of Successive approximation.	
Equations	Compare the concept of linear and non-linear oscillation	
	Develop the knowledge about existence, uniqueness, other properties of a	
	solution of differential equations and concept of boundary value problems	
	Recall the basics of Latex software while preparing a Document.	
	Understand the Mathematical formulas and Drawing tools of Latex.	
LATEX	Analyze the need of Latex software.	
LAIEX	Apply the advanced mathematics with Latex tools.	
	Discuss the coding Series, symbols and limits.	
	Develop the knowledge of investigating and learning new LATEX package	

	on their own.
	Recall the fundamental concept of Linear Programming Problem.
	Understand the concept of Advanced Linear Programming.
Operations	Examine the concept of Integer L.P. in a suitable way.
Research	Construct the problems based on Classical optimization Theory.
	Evaluate the problems on Non - linear programming.
	Develop the problem solving techniques using operations research.
	Semester-II
	Recall the concept of analytic functions.
	Understand the concept of complex integration.
	Apply the concept of calculus of Residues and its corresponding theorems.
Complex Analysis	Examine the series and product developments.
	Prove the Riemann Mapping theorem.
	Build deep knowledge of complex numbers and its functions in advanced
	level.
	Recall the basic concepts of Vector spaces.
	Understand the concept of algebra of linear transformations.
	Construct the algebra of polynomials .
Linear Algebra	Classify the concept of Annihilating polynomials and Invariant subspaces .
	Evaluate the concept of Decomposition .
	Develop the concept of linear algebra to enhance ethical and legal
	environment.
	Recall the basic concept of Non Linear partial differential equation of first
	order.
	Illustrate the non Linear partial differential equation of second order.
Partial Differential	Apply the solution of linear hyperbolic equations and its operations.
Equations	Examine the concept of Laplace equation with related problems.
	Evaluate the concept of wave equations.
	Develop the knowledge of partial differential equations and its applications.
Mathematical	Recall the fundamental concept of Random Variables.
	1

Statistics	Understand the concept of Discrete and continuous probability distribution
	function.
	Apply the concept of Unbiasedness and Cramer- Rao inequality .
	Evaluate the fitting of curves with related problems.
	Classify the Analysis of Variance.
	Develop the problem solving techniques using statistical tools.
	Recall the basic concepts involved in a graph.
	Understand the concept of trees and its applications.
	Apply the concept of Connectivity and Traversability.
Graph Theory	Analyze the concept of Matching and coloring.
	Evaluate the concept of planarity of graph.
	Discuss about the application of Graph theory in computer science and other
	fields.
	Recall the concept of numerical differentiation and integration and its
	applications.
	Understand the concept of solving system of equations through various
	methods.
Numerical Methods	Apply various methods for obtaining a better solution for ODE.
Numerical Methous	Analyze the concept of boundary value problems and characteristic
	equations.
	Evaluate the numerical solution of Partial differential equations.
	Develop the practical knowledge on solving problems using Numerical
	Methods.
	Recall the basic concept of cryptography to ensure network security.
	Understand the concept about the encryption techniques
Countercontry and	Analyze Authentication and Hash functions.
Cryptography and	Apply Network security and its applications.
Network Security	Explain the need of System level security in order to detection of
	threads/function.
	Develop the practical knowledge on Cryptography and Network Security.

	Recall the General description of Solar system.
	Understand the concept of Celestial sphere and Diurnal motion also length
	of the day.
Astronomy	Apply the knowledge of Twilight.
	Analyze refraction with respect to tangent formula.
	Explain the concept of Kepler's Law.
	Discuss about the application of Astronomy in real world.
	Semester-III
	Remember the basic terminologies of Topology.
	Understand about Connectedness and Compactness with its limits.
	Apply the idea of Countability and Separation Axioms.
Topology	Analyze the concept of regular spaces.
	Prove the theorems on Complete Metric spaces.
	Develop the knowledge about the mathematical results like Uryzohn's
	Lemma and understand the dynamics of the proof techniques.
	Recall the basic concepts of fuzzy set and its properties.
	Understand the concept of Fuzzy relations.
Fuzzy Logic and	Examine the concept of Fuzzy Measures.
Systems	Evaluate the concept of Uncertainty.
	Apply the concept of fuzzy theory in Real world.
	Discuss and develop new technologies so as to improve computing facility to
	maintain environment sustainability.
	Recall the basic concepts of mechanical system.
	Understand the concept of Lagrange's equation s and its derivations.
Mashanian	Evaluate the concept of Hamilton's equations.
Mechanics	Examine the concept of Jacobi theory and its equation.
	Apply the concept of Canonical Transformations.
	Develop the knowledge of advanced mechanics.
Control Theory	Recall the basic concept of Linear systems and Observability Grammian.
Control Theory	Understand about the reconstruction kernel with their Nonlinear Systems.

	Build the Controllability Grammian Constant coefficient systems and
	Adjoint systems.
	Apply the concept of steering function with Nonlinear systems.
	Analyze the concept of Asymptotic Stability of Linear Systems with the
	help of uniform stability.
	Develop the concept of Stabilization via linear feedback control,
	Controllable subspace and Stabilization with restricted feedback.
	Remember the concept of Dual space considerations.
	Understand the concept of Reflexivity and reconvergence.
Operator Theory	Apply the concept of Compact operators and its properties.
Operator Theory	Analyze the Banach space operators.
	Evaluate the concept of Operators and Hilbert space.
	Develop the knowledge of Operator Theory in various fields.
	Recall the basic concept of Probability and its axioms.
	Understand the concept of independence and strong convergence.
Drobobility Theory	Apply Law of large numbers and also random walk.
Probability Theory	Classify the conditional expectations and conditional probabilities.
	Prove the Central Limit theorem.
	Develop the knowledge of Probability Theory in diverse situations.
	Understand the basic comments of Matlab.
	Recall the concept of Matrices and Vectors.
Matlab	Explain the concept of Scripts and Functions in files.
Watab	Classify the concept of Two and Three dimensional plots.
	Apply the concept of Linear Algebra, Finding Eigen Values and Vectors.
	Develop the knowledge of problem solving techniques in Matlab.
	Semester-IV
	Understand the concept Banach Spaces and Hahn Banach theorem.
Functional Analysis	Analyze the Conjugate of an operator and Orthogonal components.
Functional Analysis	Apply the different types of operators with respect to conjugate space.
	Recall the knowledge of Matrices, Determinants of Operator.

	Evaluate the formula for spectral radius.
	Develop the knowledge about numerical analysis and operator equations.
	Remember the basic concept of fluid flow.
	Understand the energy equation of flow of a fluid.
Eluid Dumantia	Apply the concept of two dimensional motion of fluid and the lift forces.
Fluid Dynamics	Analyze viscous flow and the steady flow of fluids.
	Explain the concept of boundary layer.
	Develop the knowledge of Fluid Dynamics and its applications.
	Remember the basic concept of integral equations.
	Understand about the boundary value problems.
Mathematical	Apply the concept of two dimensional motion of fluid and the lift forces.
Methods	Analyze viscous flow and the steady flow of fluids.
	Explain the concept of boundary layer.
	Develop the knowledge of Fluid Dynamics and its applications.
	Remember the basic concepts of Stochastic processes.
	Understand the concepts of Bernoulli trails.
Stochastic Processes	Apply the concept of Poisson process and its extensions.
Stochastic Trocesses	Classify the conditional expectations and conditional probabilities.
	Prove the theorems on queuing model .
	Develop the knowledge of Stochastic Processes in diverse situations.
	Recall the basic concept of Numbers and need of Number theory.
	Understand the concept of Mobius function.
Number Theory	Apply the concept of Chebyshev's functions and its connections.
Number Theory	Analyze the properties of congruences and also reduced residue system.
	Compare the concept of Groups and sub groups.
	Develop the knowledge of Number Theory in different situations.
	Recall the concept of Analytic representation through curves.
Differential	Understand the concept of Curvature torsion.
Geometry	Compare the concepts of Evolutes and Involutes.
	Apply the First & Second Fundamental form of Normal,

	Prove the theorems on Mesniers, Eulers of some surfaces.
	Develop the knowledge of Differential geometry to diverse situations in
	mathematical contexts.