RATHINAM COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)

Eachanari, Coimbatore – 641021

DEPARTMENT OF BIOTECHNOLOGY

Syllabus for

B.Sc. Biotechnology

(I, II, III & IV Semester)

2018 to 2019 Batch on wards

VISION AND MISSION OF THE INSTITUTION

VISION

A world renowned Industry Integrated Institution that imparts knowledge, skill and research culture in young men and women to suit emerging young India.

MISSION

To provide quality education at affordable cost and to maintain academic and research excellence with a keen focus on Industry Integrated Research and Education.

VISION AND MISSION OF THE DEPARTMENT

VISION

The Department to impart in-depth of knowledge in biotechnology to create a pool of scientific personnel with expertise in living system.

MISSION

The significant role being played by biotechnologists in industrial development and has sought to implement an integrated approach towards education and research.

PROGRAM EDUCATIONAL OBJECTIVE (PEO)

PEO 1: Scientific Knowledge – students will able to learn the strong foundation of fundamentals

biological science to applied with living and non living things.

PEO 2: Technical Skill – Student will able exercise the recent and advanced techniques on biotechnology protocol to help the industrial process.

- **PEO 3**: Analysis and understanding The chances of Students will trouble shoot the technology based problems on their ideas through academic research
- **PEO 4**: Scale up of requirements The outcome of biotechnology graduates to meet the emerging needs for biotechnologists in India and abroad.

MAPPING OF INSTITUTE MISSION TO PEO

Institute Mission	PEO's
Imparting Knowledge and Skill	PEO1, PEO2
Research Culture	PEO3
Industry Collaboration	PEO2
Emerging young India	PEO4

MAPPING OF DEPARTMENT MISSION TO PEO

Department Mission	PEO's
Significant role of Biotechnologist	PEO1, PEO2
Implementation of Industrial Development	PEO3, PEO4
Integration of Education and research	PEO2,PEO3

PROGRAM OUTCOMES

PO1: Ability to gain the knowledge fundamental fields of biotechnology

PO2: Ability to apply the knowledge of chemistry, Mathematics and computer to biotechnology problem solving.

PO3: Ability to learn the technical knowledge to conduct the experiments

PO4: Ability to manage and solve the technical problems on experiments

PO5: Ability to apply their ideas on their own research like Mini Project.

PO6: Ability to join and share their scientific ideas.

PO7: Ability to locate the need for society

PO8: Ability to understand the Professional and ethical responsibility

CORRELATION BETWEEN THE POS AND THE PEOS

Program Outcomes	PEO1	PEO2	PEO3	PEO4
PO1	\checkmark			
PO2	\checkmark	\checkmark		
PO3			\checkmark	
PO4			\checkmark	
PO5				
PO6				
PO7	\checkmark		\checkmark	
PO8				

Components considered for course delivery is listed below:

1.Class room Lecture	-	Ι
2.Laboratory class and demo	-	Π
3.Assignments	-	III
4.Mini Project	-	IV
5.Project	-	V
6.Online Course	-	VI
7.External Participation	-	VII
8.Seminar	-	VIII
9. Internship	-	IX

MAPPING OF POS WITH COURSE DELIVERY

			Cour	se Deliv	very				
Program Outcomes	I	II	III	IV	V	VI	VII	VIII	IX
PO1	\checkmark								
PO2	\checkmark	\checkmark							
PO3	\checkmark	\checkmark		\checkmark	\checkmark			\checkmark	
PO4		\checkmark						\checkmark	\checkmark
PO5	\checkmark			\checkmark	\checkmark		\checkmark		
PO6							\checkmark		
PO7									\checkmark
PO8	\checkmark								

RATHINAM COLLEGE OF ARTS & SCIENCE (AUTONOMOUS)

Scheme of Curriculum for Biotechnology for the Batch admitted during 2018-2019 Onwards

Sem	Part	Туре	Sub Code	Subject	Credit	Per Week	CIA	ESE	Total	Exam Hours
1	1	L1	17BGE11T	Language - I	3	5	40	60	100	3
1	2	E1	17BBT22E	English for Communication	3	5	40	60	100	3
1	3	C1	18BBT13A	Core - I Cell Biology	4	5	40	60	100	3
1	3	C2	18BBT13B	Core - II Bioinstrumentation	4	5	40	60	100	3
		CP1		Practical I:Lab in Cell Biology , Bioinstrumentation and Microbiology		3				
1	3	A1	18BBT1AA	Allied – I Chemistry I	4	5	40	60	100	3
1	4	AEC1	17BGE1FA	Ability Enhancement Compulsory Course-I –	2	2	50	0	50	3
1	6	VAC 1	18BBC1VB	Value Added Course - I Good Lab Practice	2		100	0	100	3
2	1	L2	17BGE21T	Language - II	3	5	40	60	100	3
2	2	E2	17BGE22E	English for Computer Science	3	5	40	60	100	3
2	3	C3	18BBT23A	Core - III Microbiology	4	5	40	60	100	3
2	3	C4	18BBT23B	Core - IV Genetics	4	5	40	60	100	3
2	3	CP1	18BBT23P	Practical I: Lab in Cell Biology, Bioinstrumentation and Microbiology	4	3	40	60	100	3
2	3	A2	18BBT2AB	Allied – II Chemistry II	4	5	40	60	100	3
2	4	AEC2	17BGE2FB	Ability Enhancement Compulsory Course-II –	2	2	50	0	50	3
2	6	VAC 2	VAC2	Value Added Course - II Food Adulteration	2		100	0	100	3
3	3	C5	18BBT33A	Core - V Biochemistry	4	6	40	60	100	3
3	3	C6	18BBT33B	Core - VI Plant Biotechnology	4	6	40	60	100	3
3	3	A3	18BBT3AC	Allied - III Fundementals of Bionanotechnology	4	5	40	60	100	3
3	3	CP2	18BBT33P	Core Practical II: Lab in Biochemistry & Plant Biotechnology	4	5	40	60	100	3

3	4	S1	18BBT3ZA	Skill Enhancement Courses – I Human	3	4	40	60	100	3
3	4	AEC3	17BGE3FC	Anatomy & Physiology Ability Enhancement Compulsory Course-III –	2	2	50	0	50	3
3			18BBT33V	Core - IX Industrial Training Report %	3		50	0	50	
3	6	VAC3	VAC3	Value Added Course - III Analytical Instrumentation	2		100	0	100	3
3	6	IDL 1	IDC1	Inter Department Learning – I #	2	2	0	100	100	3
4	3	C7	18BBT43A	Core -VII Immunology &Immunotechnology	4	6	40	60	100	3
4	3	C8	18BBT43B	Core - IX Animal Biotechnology	4	6	40	60	100	3
4	3	CP3	18BBT43P	Core Practical III: Lab in Animal Biotechnology & Immunology			40	60	100	3
4	3	A4	18BBT4AD	Allied - IV Computational Biology	4 5		40	60	100	3
4	4	S2	18BBT4ZB	Skill Enhancement Courses – II Pharmaceutical Biotechnology	Skill Enhancement Courses – II 3 4 Pharmaceutical		40	60	100	3
4	4	AEC4	17BGE4FD	Ability Enhancement Compulsory Course-IV –	2	2	50	0	50	3
4	6	VAC 4	VAC4	Value Added Course - IV Waste Management System	2		100	0	100	3
4	6	IDL	IDC2	Inter Department Learning – II #	2	2	0	100	100	3
5	3	C9	18BBT53A	Core - IX - Genetic Engineering	4	6	40	60	100	3
5	3	C10	18BBT53B	Core - X - Molecular Biology	4	6	40	60	100	3
5	3	CP4	18BBT53P	Core Practical IV: Lab in Molecular Biology and Genetic Engineering	4	6	40	60	100	3
5	3	EL1	ELE1	Elective - I	4	5	40	60	100	3
5	4	S 3	18BBT4ZC	Skill Enhancement Courses – III Introduction to Bioinformatics	3	5	40	60	100	3
5	3	C16	18BBT53V	Core - XVI - Mini Project %	3	2	40	60	100	

5	6	VAC	VAC5	Value Added Course - V Mushroom Cultivation	2		100	0	100	3
6	3	C11	18BBT63A	Core - XI - Environmental Biotechnology	4	5	40	60	100	3
6	3	CP5	18BBT63P	Core Practical V: Lab in Industrial and Environmental Biotechnology	4	5	40	60	100	3
6	3	EL2	ELE2	Elective - II	4	5	40	60	100	3
6	3	EL3	ELE3	Elective - III	4	5	40	60	100	3
6	3	C19	18BBT63V	Core Project	8	5	80	120	200	3
6	4	S 4	18BBT6ZD	Skill Enhancement Courses – IV Entrepreneur Development	3	5	40	60	100	3
6	5	EX	17BGE65A	Extension Activity- EX %	2		50	0	50	
			TOTAL		154		2160	2240	4400	

Elective - I	Elective - II	Elective - III
Research Methodology	Industrial Biotechnology	Biosafty, Bioethics & IPR
Biodiversity	Bioprocess & Technology	Introduction to Genomics
Evolutionary Biology	Microbial Biotechnology	Fundementals of Proteomics

Inter Department Learning Courses						
	1.Modern Medical System					
	2.Science and Technology					
Semester-III	for Society					
Semester-III	3.Alternative Medicine					
	4.Diesease and Natural					
	Treatments					
	1.Health through Nutrition					
	2.Applications for					
	Biostatistics in Life Science					
Semester-IV	3. Introduction to Food					
Semester IV	Biotechnology					
	4. Traditional Herbal					
	Remedies for Primary					
	Health Care					

Mapping of Courses and POsS-Strong CorrelationM – Medium CorrelationB-Blank

Course	Course Name	Program Outcome								
Code		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	
	Core I - Cell Biology	S	В	S	S	Μ	М	М	S	
	Core II - Bioinstrumentation	S	Μ	S	S	М	S	М	М	
	Allied I: Chemistry I	В	S	М	М	М	S	S	М	
	Core III – Microbiology	S	В	S	S	S	S	S	М	
	Core IV - Genetics	М		Μ	М	S	М	S	S	
	Practical I (Lab in Cell Biology, Bioinstrumentation									
	and Microbiology	S	S	S	S	S	S	S	S	
	Allied II: Chemistry II	В	S	М	Μ	М	S	М	М	
	Core V – Biochemistry	S	М	S	Μ	М	S	S	S	
	Core VI – Plant Biotechnology	S	Μ	S	S	М	S	S	S	
	Practical II (Lab in Biochemistry and Plant									
	Biotechnology)	S	S	S	S	S	S	S	S	
	Allied III: Bionanotechnology	В	S	S	Μ	М	S	М	Μ	
	Skill Based Subject I – Human Anatomy & Physiology	М	Μ	М	М	S	S	S	S	
	Core VII– Immunology &Immunotechnology	S	В	S	S	M	Μ	S	S	
	Core VIII – Animal Biotechnology	S	S	S	S	S	S	S	S	
	Core Practical III Lab in Immunology & Animal	~	~	~	~	~	~	~	~	
	Biotechnology	S	S	S	S	S	S	S	S	
	Allied IV: Computational Biology	В	S	S	S	В	В	Μ	М	
	Skill Based subject II - Pharmaceutical Biotechnology	S	M	М	М	S	S	S	M	
		G		G	G		N	G		
	Core IX- Genetic Engineering	S	M	S	S	M	M	S	S	
	Core X- Molecular Biology	S	S	S	S	S	S	S	S	
	Core Practical IV: Lab in Genetic engineering and Molecular Biology	S	S	S	S	S	М	S	М	
			-							
	Elective I	S	M	B	B	M	M	S	M	
	Elective II	S	M	B	B	M	M	S	M	
	Industrial Training	S	S	S	S	S	S	S	S	
	Skill Based subject III - Bioinformatics	S	S	М	М	S	S	M	M	
	Core XI - Environmental Biotechnology	S	В	М	М	S	S	S	S	
	Core Practical V Lab in Industrial& Environmental	3		141	141	6	6	3		
	Biotechnology	S	S	S	S	S	S	S	S	
	Elective III	S	S	S	S	S	S	S	S	
	Core Project	S	S	S	S	S	S	S	S	
	Skill Based Subject IV - Entrepreneur Development	S	M	M	M	S	S	M	M	

Semester: I

or mester. I										
Subject Code	Subject Title	Credit	Lecture	Tutorial	Practical	Туре				
17BGE11T	Part I Tamil	3	6	1	0	Theory / Practical				
Introduction: பகுதி முதல் பாடமாக அமையும், தமிழ்பாடம் கவிதைகள், இலக்கணம், இலக்கிய										
	வரலாறு ஆகியவைகள் கொண்டு அமைந்து உள்ளது. ஐந்து அலகுகளாக பகுக்கப்பட்டுள்ளது.									
Course Outcom	le:									
	ல இலக்கியத்தில் பாரதியா 1ளுவதால் தன்னம்பிக்கைன					551				
	ப்பற்றும், கடமை உணர்வும் யில் உள்ளது.	மற்றும்	வாழ்வியல்	கருத்துக்கஎ	ளைக் கூறும்					
CO3: அறும்	எனப்படும் கட்டுரை வாழ்வி	ധർ ഖി(ழபியங்கள் ,	அறிய உதவு	வனவாக உ	ள்ளது				
CO4: படைப்பி	லக்கியம் மாலாவாகளின் ப	படைப்புத்	த்றனை வெ	iளிப்படுத்தும்	வீதமாக உ	ள்ளது.				
	த, புதுக்கவிதைகள் ஆகிய மூலம் வளர்ச்சி நிலைகள்				ு கொள்ளலா	ф.				
	யார் - கண்ணன் என் சே கண்ணதாசன்-எங்கே அ									
நல்ல நாடு,	- மரங்கள், சல்மா- வி கலாப்ரியா- வளர்ச்சி, விளக்கம் அளித்தல்									
	எப்படுவது - 8 கட்டுரை கதைகள் கற்றுக்கொடுக்		ழசிரியர் (மு	னைவர் அர	ழதன்) — மா	[12 Periods] எனவர்களுக்கு				
Unit IV:						[12 Periods]				
1)லக்கியம், வல்லினம் ப துதல், பேச்சுத்திறன்	ிகும்,	மிகா இப	ங்கள், கவி	தை எழுத	தல்,				
	ர் தோற்றமும் வளர்ச்சியும 1ன் தோற்றமும் வளர்ச்சிய					[12 Periods]				

முதற்பருவம்

(மரபுக்கவிதை, புதுக்கவிதை, இலக்கணம், இலக்கியவரலாற)

அலகு 1 தற்கால இலக்கியம்

- 1. பாரதியார் கண்ணன் என் சேவகன்
- 2. பாரதிதாசன் தமிழியக்கம்
- வரமுத்து எப்போதோ பெய்தமழை
- 4. கண்ணதாசன் எங்கே அவன்
- 5. சிற்பி இளந்தமிழே

அலகு 2 தற்கால இலக்கியம்

1. மு.மேத்தா	- மரங்கள்
2. சல்மா	- விலகிப்போகும் வாழ்க்கை
3. அப்துல் ரகுமான்	- பாருக்குள்ளே நல்ல நாடு
4. கலாப்ரியா	- வளா்ச்சி
5. மனு'ய புத்திரன்	- பயனற்றுப் போகும்போது

-

அலகு 3 உறைடை

அறம் எனப்படுவது - 8 கட்டுரைகள் (முனைவர் அமுதன்)

அலகு 4 இலக்கணம் - படைப்பியிலக்கியம்

- வல்லினம் மிகும், மிகா இடங்கள்
- 2. கவிதை எழுதுதல்
- சிறுகதை எழுதுதல்
- பேச்சுத்திறன்

அலகு 5 இலக்கிய வரலாறு

- உரைநடையின் தோற்றமும் வளர்ச்சியும்
- சிறுகதையின் தோற்றமும் வளர்ச்சியும்
- புதுக்கவிதையின் தோற்றமும் வளர்ச்சியும்

பயிற்சிக்குரியன

மொழிபெயர்ப்பு

பார்வை நூல்கள் : இலக்கியவரலாறு – பாக்கியமேரி, இலக்கண நூல்,

Semester : I

Subject Code Subject title Credit Lecture Tutorial Practical Type Core I – Cell Biology 4 5 1 0 Theory Introduction: This course presents the types and structural details of the basic unit by which all the living things.

Course Outcome

CO1: To become skillful the basics of cell structure and classification.

CO2: To know the component and functions of cells.

CO3: To learn the functional activity of cells.

CO4: To become familiar with cell multiplication and action.

CO5: To learn the cell to cell communication and types.

Unit I:

[12 Hrs]

Cell as a basic unit: discovery of the cells, Classification of cell types, development of cell theory,

early chemical investigation in cell biology. Prokaryotic and Eukaryotic cell organization.

Unit II:

Cell transport phenomenon: Membrane architecture. Active, Passive, diffusion and osmosis.

Chemistry of carbohydrates, lipids, proteins and nucleic acid.

Unit III:

Structure and functions of cytoplasmic components of the cell: Ribosome and protein synthesis,

energy flow through mitochondrion, chloroplast and photosynthesis, Golgi apparatus, lysozymes and microbodies, endoplasmic reticulum, cytoskeleton, vacuoles, peroxysomes, lysozomes and

Nuclear compartment. Heterochromatin and euchromatin, polytene chromosomes.

Unit IV:

Cell division in prokaryotes and eukaryotes: Cell cycle, mitosis, meiosis, crossing over and charecteristics of cancer. Apoptosis, Stem cell, Prions

Unit V:

Integrative and specialized cellular events: Cell – Cell signaling, Specialized cells – nerve cells, sperm cells, microfilaments, microtubules, muscle cells. Cells of Vision, Nucleo -cytoplasmic interaction, cell cloning.

Text Book:

1. Cell Biology by P S Verma and V K Agarwal, 2016

References:

1.Cell and molecular biology, 3rd edition, Philip Sheeler, Donal E Bianchi, John Wiley 2. Molecular biology of cell, Albert et al

3. Molecular cell biology, Lodish, Baltimore, Scientific American books, 1994

[12Hrs]

[12 Hrs]

[12 Hrs]

[12 Hrs]

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
Outcomes	FOI	FO ₂	103	F04	105	100	F07	100
CO1	\checkmark	\checkmark			\checkmark	\checkmark		
CO2	\checkmark		\checkmark	\checkmark			\checkmark	
CO3	\checkmark	\checkmark	\checkmark		\checkmark			
CO4	\checkmark		\checkmark			\checkmark		
CO5	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark

Semester :I

Subject Code Subject title Credit Lecture Tutorial Practical TypeCore II –Bioinstrumentation4410TheoryIntroduction: This course presents study of Instruments of Biological Importance in the field of
Biotechnology..Biological Importance in the field of

Course Outcome

CO1: To become skillful the operation of microbiological instruments.

CO2: To know the handling of Analytical instruments.

CO3: To learn the application of chromatographic techniques.

CO4: To become familiar with methods used in immunological assay.

CO5: To learn the applications of immunotechnology.

Unit I:

[12 Periods]

pH Meter, Buffer of Biological importance, Centrifuge – Preparative, Analytical and ultra, Laminar Air flow, Autoclave, Hot Air oven and Incubator.

Unit II:

[12 Periods]

Spectroscopic Technique: Colorimeter, Ultra violet and Visible, Infra red and Mass Spectroscopy

Unit III:

[12 Periods]

Chromatographic Techniques: Paper, Thin Layer, Column, HPLC and GC. Electrophoresis Techniques: Starch, Gel, AGE, PAGE.

Unit IV:

[12 Periods]

Immunological Methods: Precipitation reaction based assay. Radial Immuno Diffusion, Immunoelectrophoresis, Counter Current.

Unit V:

[12 Periods]

Complement fixation Test, Radio Immuno Assay, ELISA, PCR, Immunoblotting and Hybridization, Autoradiography.

Text Book:

1. Bioanalytical techniques by SekharTallar (2009)- IK International Publishing House Pvt Ltd. 2. Practical Biochemistry- Wilson & Walker – Vth edition (2009)Cambridge University Press

Reference:

1.Immunology by Kuby.,J - 5th Edition

2. Introductory Practical Biochemistry – S.K.Sawhney and Randhir Singh. Narosa Publishing House

3.Principles of Applied Biomedical Instrumentation – Gedder A and L.E.Balsar, John Wiley and Sons.

4. Modern Experimental Biochemistry 2nd Edition – Boyer, Rodney F.Benjamin and Cummins.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	BOS
Outcomes	FUI	FO2	FUS	r04	105	FU0	r0/	PO8
CO1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
CO4	\checkmark							
CO5	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark

Semester: I

Subject Code Subject title Credit Lecture Tutorial Practical Type

Allied I – Chemistry I4410TheoryIntroduction: To introduce the concepts which gives knowledge about industrial chemistry. On
successful completion of this paper the students should gain the knowledge about bonding, Dye,
Fertilizer, industrial Chemistry, Chromatography and Stereoisomerism.0Theory

Unit I:

[12Hrs]

1. Molecular orbital theory, bonding, antibonding and non-bonding orbitols. Molecular orbitals. MO configuration of H₂,N₂,O₂,F₂. Bond order. Diamagnetism and paramagnetism.

2. Diborane: Preparation and properties, structure, preparation and uses of NaHB4, Borazole-Chemistry.

3. Interhalogen compounds: ICl, BrF3, IF3- Preparation, properties, hybridization and structure, shape. Basic properties of iodine.

4. Sodium hydrosulphite, peracids of sulphur: preparation, properties and uses. Structure. **Unit II:** [12Hrs]

1. Industrial Chemistry: Synthesis, properties and uses of silicones. Fuel gases: natural gas, water gas, semi water gas, carburetted water gas, producer gas, oil gas (manufacturing details not required).

2. Fertilizers: urea, ammonium sulphate, ammonium nitrate, potassium nitrate NPK fertilizer. Triple superphosphate. Pollution of air, water and soil-sources, remedies.

Unit III:

1. Covalent bond: orbital overlap, hybridization, geometry of organic molecules-CH4,C2H4,C2H2, C6H6. Inductive effect. Electrometric, mesomeric, hyperconjucative and steric effects. Effect in properties of compounds

2. Stereoisomerism Optical isomerism: symmetry, elements of symmetry. Cause of optical activity, tartaric acid, Racemisation, Resolution. Geometric isomerism of maleic and fumaric acids. Keto-enoltautomerism in Acetoacetic esters.

Unit IV

[12Hrs]

[12Hrs]

1. Terms: chromophore, auxochrome, bathochromic shift, hypsochromic shift, hyperchromic effect, hypsochromic effect.

2. Dyes: azo and triphenylmethane dyes- Preparation one example.

Unit V:

[12Hrs]

1. Solutions : Types. Liquid in Liquid. Raoult's law. Deviation from ideal behaviour. Binary liquid mixtures. Fractional distillation .

 Kinetics: Rate, order, moleculality, pseudo first order, determination of order. Measurement of reaction. Effect of temperature on the rate. Energy of activation.
Chromatography: Principle and application of column, paper and thin layer chromatography.

Text Book

Dr. V. Veeraiyan.,"Text book of Ancillary chemistry", Volume I, High mount Publishing house, Chennai-14,Edition-2008 (Unit-I to Unit-V)

References

P.L. Soni, "Text Book of Inorganic Chemistry", Sultan Chand &Sons, New Delhi, 2013 Puri and Sharma, "Text book of Inorganic Chemistry", Vishal publishing, 2014

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
Outcomes								
CO1	\checkmark	\checkmark			\checkmark	\checkmark		
CO2	\checkmark		\checkmark	\checkmark			\checkmark	
CO3	\checkmark	\checkmark	\checkmark		\checkmark			
CO4	\checkmark		\checkmark			\checkmark		
CO5	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark

Semester: I

Subject Code Subject title Credit Lecture Tutorial Practical Type **Environmental Studies** 2 2

Introduction: To gain knowledge on the importance of environmental education and ecosystem

0

0

Unit I:

Multidisciplinary nature of environmental studies: Definition, scope and importance, Need for public awareness.

Unit II:

Ecosystems-Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Food chains, food webs and ecological pyramids. Types of ecosystem Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Unit III :

Environmental Pollution – Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards.Solid waste Management : Causes, effects and control measures of urban and industrial wastes. Disaster management : floods, earthquake, cyclone and landslides.

Unit IV :

Social Issues and the Environment - Urban problems related to energy, Water conservation, rain water harvesting, watershed management, Environmental Issues in Coimbatore District (Noyyal River, Dye Industries and Agricultural issues). Environmental ethics : Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents. Environment Protection Act, Wildlife Protection Act, Forest Conservation Act, Issues involved in enforcement of environmental legislation.

Unit V :

Human Population and the Environment - Population growth, variation among nations, Population explosion - Family Welfare Programme, Environment and human health, Human Rights Women and Child Welfare, Role of Information Technology in Environment and human health.

REFERENCE:

1. Textbook for Environmental Studies for Undergraduate Courses of all Branches of Higher Education ErachBharucha for University Grants Commission

2. Thangamani. A and Shymama. T, A Text Book of Environmental Studies, 2nd ed, DPH, New Delhi, 2006.

3. Environmental Studies for Undergraduate Course – Bharathiar University.

(4Hrs)

(6Hrs)

(5Hrs)

(2 Hrs)

FC

(5Hrs)

Rathinam College of Arts & Science (Autonomous), Coimbatore-21. For Candidates admitted in *B.Sc Biotechnology from the academic year 2018* Regulation onwards 2018

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	DOP
Outcomes	FUI	FO2	FUS	r04	105	FU0	r0/	PO8
CO1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
CO4	\checkmark							
CO5	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark

Semester :II

Subject CodeSubject TitleCreditLectureTutorialPracticalTypeCore Paper III – Microbiology4500TheoryIntroduction:This course presents the Microbes classification, Identification and
characterization.IdentificationIdentification

Course Outcome

CO1: To become skillful the basics of Microscope principle and application

CO2: To know the component and functions of cells.

CO3: To learn the media preparation and microbe's isolation.

CO4: To become familiar with Physiology of microorganisms.

CO5: To learn the disease from microbes.

UNIT I:

Definition - scope of microbiology - A general account on microbial diversity-Basic principles in microscopy - Types of microscopes - light - dark - phase contrast - fluorescent - electron microscope-TEM - SEM

UNIT II:

A detailed account of General structure - growth - reproduction of Bacteria - fungi -Virus - Economic and industrial importance - yeast - moulds

UNIT III:

Microbiological Media - Types, preparation - methods of sterilization - enumeration of microorganisms in soil - water - air - isolation of microorganisms from Environment - infected tissue - Techniques of pure culture - maintenance and Preservation - Staining - stains and types of staining;

UNIT IV:

Physiology - biochemistry of microbes - Photoautotrophs - Chemo autotrophs - Parasitism -Saprophytism - Mutualism - Symbiosis - Commensalism - endozoic microbes

UNIT V:

Nitrogen metabolism including - Nitrogen fixation (Symbiotic and asymbiotic) - Lipid metabolism - Secondary metabolism - microbial pathogens of plants - TMV - Gemini virus - animalsYersinia pestis - rabies - humansHIV - HSV - Role of microbes in biogeochemical cycles

REFERENCES:

1. Michael T. Madigan John M. Martin & Jack Parker, 1984, Biology of Microorganisms Prentice Hall International, Inc., London.

2. Edward A. Birge, 1992, Modern Microbiology – Principles and application. Wm.C. Brown Publishers, Inc. U.S.A.

3. Gerard J. Tortora, Berdell R. Funke, Christine & L. Case, 2001, Microbiology - An Introduction. Benjamin Cummings, U.S.A.

4. Danial Lim, 1998, Microbiology, McGraw-Hill Companies, New York.

(12 Hrs)

(12 Hrs)

(12 Hrs)

(12 Hrs)

(12 Hrs)

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
Outcomes	FOI	FO ₂	103	F04	105	100	F07	100
CO1	\checkmark	\checkmark			\checkmark	\checkmark		
CO2	\checkmark		\checkmark	\checkmark			\checkmark	
CO3	\checkmark	\checkmark	\checkmark		\checkmark			
CO4	\checkmark		\checkmark			\checkmark		
CO5	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark

Semester II

Semester II			
Subject Code Subject Title Credit Lecture		Practical	Туре
Core Paper IV – Genetics 4 5	0	0	Theory
Introduction: This course presents the Genetics of	of Chromosome	s and Gene Inte	eraction.
Course Outcome	D ¹ · 1 1	TT	
CO1: To become skillful the basics of Mendelian			
CO2: To know the component and functions of G			
CO3: To learn the Chromosomal variation in num			
CO4: To become familiar with Structure of chrom			
CO5: To learn the Genetic control of Developmer	it in Drosophila	•	
UNIT I			(12 Hrs)
History of Genetics -Mendelian Principles - Segre Multiple alleles - Pseudo alleles - Incomplete dom complementation test	• •		
UNIT II			(12 Hrs)
Gene interaction - Epistasis - penetrance - express	sivity - lethality	and lethal gene	es - Sex
determination - sex linkage in diploids - linkage - theory of inheritance - maternal effects	• •	-	
UNIT III			(12 Hrs)
Chromosomal variation in number - Changes in C aberrations - Genetics of Heamoglobin - Transpos			
UNIT IV			(12 Hrs)

Structure of chromosome - fine structure of Gene - cistron - recon - Structure of Eukaryotic gene -Experimental evidence for DNA as the genetic material - cytoplasmic genetic systems mitochondria - chloroplast DNA

Genetic control of Development in Drosophila - Arabidopsis - Population genetics - calculating gene frequency - factors affecting gene frequency - Genetic drift - Shift - Pedigree analysis genetic counseling

REFERENCES:

UNIT V

- 1. Basic genetics by D.L.Hartl, 1991, Jones and Bartett public.
- 2. Friedfelder 1987, Microbial genetics, Jones and Bartett public.
- 3. Molecular Biology of the genes 4th Ed. Watson et., al, the Benjamin /Cummings coins 1987
- 4. Molecular by cell biology, 1994.Lodish, Baltimore scientific American books,Inc.

(12 Hrs)

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	DOP
Outcomes	FUI	FO2	FUS	r04	105	FU0	r0/	PO8
CO1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
CO4	\checkmark							
CO5	\checkmark	\checkmark		\checkmark		\checkmark	\checkmark	\checkmark

Semester II

Subject Code Subject Title Credit Lecture Tutorial Practical Type Allied Paper II – Chemistry II 0 Theory 4 4 **Introduction**: To introduce the concepts which gives knowledge about industrial chemistry. On successful completion of this paper the students should gain the knowledge Metals, Aromatic compounds, Amino acids and Law of thermodynamics.

Metals General methods of extraction of metals - Types of ores Methods of ore dressing - Reduction methods, electrical methods - types of refining Van Arkel Zone refining - Coordination chemistry Nomenclature - Theories of Werner, Pauling - Chelation examples. Hemoglobin, Chlorophyll -Applications of EDTA in qualitative and quantitative analysis

(8 Hrs)

(10 Hrs)

(10 Hrs)

(10 Hrs)

(10 Hrs)

Aromatic compounds - Electrophilic substitution in benzene - Mechanism of nitration - halogenation, alkylation - acylation, sulphonation- Preparation and properties of naphthalene -Heterocyclics: Preparation uses - electrophilic substitution properties of furan -thiophene-pyrrole and pyridine

Amino Acids - Classification - preparation and properties - preparation of peptides - Classification of proteins by physical properties - biological functions -Carbohydartes: classification - preparation and properties of glucose - fructose - Discussion of open chain ring structures of glucose and fructose

Energetics Definition of first law thermodynamics - Types of systems Reversible, irreversible - Isothermal and adiabatic processes - Spontaneous processes - Joule-Thomson effect - Enthalpy, bond energy - Need for the second law - Carnot cycle and Carnot theorem - Entropy and its significance - Free energy change

EMF (Definition)-Theory of oxidation and reduction -Nomenclature of cell- Daniel cell -Reference electrode -Standard Hydrogen Electrode(SHE) -Saturated Calomel Electrode (SCE) - Determination of pH-Hydrogen -Quinhydrone and glass electrodes - Hydrogen-Oxygen fuel cell -Batteries-Lead-storage battery -Batteries of future Lithium ion batteries

Text Book

Dr. V. Veeraiyan.,"Text book of Ancillary chemistry", Volume I, High mount Publishing house, Chennai-14, Edition-2008 (Unit-I to Unit-V)

References

P.L. Soni, "Text Book of Inorganic Chemistry", Sultan Chand & Sons, New Delhi, 2013 Puri and Sharma, "Text book of Inorganic Chemistry", Vishal publishing, 2014

Unit III:

Unit V

Unit II:

Unit I:

Unit IV:

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
Outcomes	FOI	FO ₂	103	F04	105	100	F07	100
CO1	\checkmark	\checkmark			\checkmark	\checkmark		
CO2	\checkmark		\checkmark	\checkmark			\checkmark	
CO3	\checkmark	\checkmark	\checkmark		\checkmark			
CO4	\checkmark		\checkmark			\checkmark		
CO5	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark

Semester :II

Subject Code	Subject title	Cred	it Lecture	Т	Tutorial	Prac	tical	Type
Core F	Practical I –	6	0	1		3	Pract	ical

Lab in Cell Biology, Bioinstrumentation and Microbiology

- 1. Microscopy
- 2. Cell Type Microbial, Animal and Plant cells
- 3. Mitosis in onion Root tip
- 4. Meiosis in Flower Buds of Allium Cepa
- 5. Buccal Epithelial Smear and Barr Body
- 6. Preparation of Buffer Phosphate, Acetate, Tris
- 7. Media Preparation and Sterilization
- 8. Isolation of microorganism from soil, water and Air
- 9. Isolation of pure culture from mixed Population
- 10. Pure culture Techniques
- 11. Selective and Differential Media Preparation
- 12. Enumeration of microorganism
- 13. Measurement of Bacterial Growth
- 14. Staining of Microorganism
- 15. IMVIC test
- 16. Carbohydrate fermentation test, TSI, H2S production test
- 17. Antibiotic sensitivity test
- 18. Permanent Slide preparation

References:

- 1. Laboratory Exercises in Microbiology by Harley and Prescott, 5th edition,
- 2. Laboratory Manual in General Microbiology by Benson, 8th edition

Semester :III

	Subject Code	Subject title Credit	Lecture	Tutorial	Practical	Type
Core V –		Biochemistry 4	5	1	0	Theory

Introduction: This course presents the Basic structure and functions of Biomolecules and their Metabolic activities.

Course Outcome

CO1: To become skillful the basics structure and functions of Amino acids and Proteins.

CO2: To understand the enzyme classification and activities.

CO3: To learn the functional activity of Carbohydrates.

CO4: To become familiar with Metabolism of carbohydrates.

CO5: To learn about Nucleic acid structure and functions.

Unit I:

(12Hrs)

(12Hrs)

Amino acids & Proteins: Structure & Function. Structure and properties of Amino acids, Types of proteins and their classification, Forces stabilizing protein structure and shape. different Level of structural organization of proteins. Fibrous and globular proteins.

Protein Isolation & Quantification, Protein Purification & Separation.

Unit II:

Enzymes: Nomenclature and classification of Enzymes, Holoenzyme, apoenzyme, Cofactors, coenzyme, prosthetic groups, metalloenzymes, monomeric &oligomeric enzymes, activation energy and transition state, enzyme activity, specific activity, common features of active sites, Role of: NAD+, NADP+, FMN/FAD, coenzymes A, Thiamine pyrophosphate, Pyridoxalphosphate, lipoic-acid, Biotin vitamin B12, Tetrahydrofolate and metallic ions. Isolation of Industrial important enzymes Amylase & Protease.

Unit III:

Carbohydrates: Structure, Function and properties of Monosaccharides, Disaccharides and Polysaccharides. Homo & Hetero Polysaccharides, Mucopolysaccharides, Bacterial cell wall polysaccharides, Glycoprotein's and their biological functions.

Lipids: Structure and functions -Classification, nomenclature and properties of fatty acids.essential fatty acids. Phospholipids, sphingolipids, glycolipids, cerebrosides. gangliosides, Prostaglandins, Cholesterol.

Oualitative and Ouantitative methods of Carbohydrates and Sugars.

Unit IV:

Carbohydrates Metabolism: Reactions, energetics and regulation. Glycolysis: Fate of pyruvate under aerobic and anaerobic conditions. Pentose phosphate pathway and its significance, Gluconeogenesis, Glycogenolysis and glycogen synthesis. TCA cycle, Electron Transport Chain, Oxidative phosphorylation. B-oxidation of fatty acids.

The effect of Physical and chemical factors of Extracellular Enzymes.

(12Hrs)

(12Hrs)

Unit V:

(12Hrs)

Nucleic acids: Structure and functions: Physical & chemical properties of Nucleic acids, Nucleosides & Nucleotides, purines & pyrimidines,. Biologically important nucleotides, Double helical model of DNA structure and forces responsible for A, B & Z – DNA, denaturation and renaturation of DNA

Isolation, quantification and Identification of genomic DNA from Blood Sample.

Reference Book

- 1. Lehninger Principles of Biochemistry By: David L. Nelson and Cox
- 2. Harper's Biochemistry By: Robert K. Myrray
- 3. Enzymes By:Trevor Palmer
- 4. Principles of Biochemistry By: Donald J. Voet, Judith G.Voet, Charlotte W.Pratt
- 5. Principles and techniques of Biochemistry and Molecular Biology Edited By Keith Wilson and John Walker

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
Outcomes	FOI	F02	105	104	105	100	10/	100
CO1	\checkmark	\checkmark			\checkmark	\checkmark		
CO2	\checkmark		\checkmark	\checkmark			\checkmark	
CO3	\checkmark	\checkmark	\checkmark		\checkmark			
CO4	\checkmark		\checkmark			\checkmark		
CO5	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark

Semester :III

	Subject Code	Subject title Credit	Lecture	Tutorial	Practical	Type
Core V –	Plant	t Biotechnology 4	5	1	0	Theory

Introduction: This course presents the Basics of Plant tissue culture and quality enhance the plant based products.

Course Outcome

CO1: To become familiar with plant tissue culture techniques and preparations.

CO2: To know the techniques for plant gene transformation and process.

CO3: To learn the functional activity of vectors for transformation.

CO4: To become familiar with transgenic plant with regulations.

CO5: To learn about Quality analysis of plant based products.

Unit I:

(12Hrs)

Plant Tissue Culture: Introduction, Plasticity and totipotency, Culture environment, plant cell culture media, growth regulators. Culture types: Callus, Cell suspension culture, Protoplast, Root culture, Shoot tip and meristem culture, Embryo culture, Microscope culture. Plant regeneration – Somatic embryogenesis and Organogenesis.

Preparation of complex nutrient medium (Murashige&Skoog' s medium)

Unit II:

(12Hrs)

Techniques for plant transformation: Introduction, Agarobacterium mediated gene transfer, Crown gall disease. Ti plasmid and T DNA, The process of T DNA transfer and integration. Practical applications of Agrobacterium mediated plant transformation. Methods of Transformations.

For selection, Prune, sterilize and prepare explants for culture.

Unit III:

(12Hrs)

Vectors for Plant transformation: Introduction, Desirable features of Plasmid vector, Basic features of vector for plant transformation, promoters and terminators, Selectable Markers, Reporter genes, Arrangement of Gene in vectors.

Significance of growth hormones in culture medium

Unit IV:

Unit V:

(12Hrs)

Transgenic Plants: Genetic manipulation of herbicide tolerance - Genetic manipulation of pest resistance - Plant disease resistant - engineering of stress tolerance - improvement of crop yield and quality - Regulations of GM crops in India, EU and USA.

Callus induction and regeneration of Endangered plant.

(12Hrs)

Quality analysis of Plant and Plant Product: Extraction plant product - Phytochemical constituent - Antioxidant Properties - Antimicrobial Properties.

Separation and Identification of plant compounds by Column chromatography, GCMS.

Reference:

Plant Biotechnology – the genetic manipulation of plants second edition –Adrian Slater, Nigel W.Scott and Mark R. Fowler. Oxford University press-2010.

DOS
PO8

Semester :III

	Subject Code	Subject title Credit	Lecture	Tutorial	Practical	Туре
Allied III –	Fundamentals of	Bionanotechnology 4	5	1	0	Theory

Introduction: This course presents the Basics of Nanotechnology, Nanoparticle preparations and Characterizations.

Course Outcome

CO1: To understand the History of Nanotechnology concept and applications.

CO2: To learn the biology of Nanoparticles synthesis and applications.

CO3: To know the techniques of Nanoparticle structure and preparations.

CO4: To become familiar with characterization of Nanoparticles.

CO5: To become know the applications of Nanobiotechnology.

Unit I:

(12Hrs)

History of Nanotechnology: Early use of nanomaterials, concept and application. Nanoparticles – Size, Shape, Properties.

To find the nanomaterials for commercially available.

Unit II:

(12Hrs)

Biological Nano objects – DNA, Protein and Lipids. Hot Nanoparticles – Quantum dot, synthesis, applications. Carbon quantum dots, synthesis and applications. Interaction of Nanoparticles with biomolecules

Unit III:

(12Hrs)

Nanoparticles structure and Preparation – Solvent Evaporaion, Nanoprecipitation, Emulsification Diffusion, Supercritical fluid Technology, Polymerization in Emulsion, Interfacial Polymerization, Liposomes, Cubosomes, Hexosomes. Synthesis of Nanoparticles in aqueous extract

Unit IV:

(12Hrs)

Nanoparticles Characterization Techniques – X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Transmission Electron Microscope (TEM), Scanning probe microscopes (SPM), Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), Ultraviolet visible spectroscopy (UV-Vis).

Result analysis of characterized nanoparticles.

Unit V:

Applications of Nanobiotechnology in Medicine, Drug Designing, and Cancer treatment. Nanobiotechnology in Medical, Social and Ethical Consideration. To demonstration of cancer treatment using Nanoparticles.

Text Book

- 1. Text book of Nanotechnology by Dr.G.Dhamodharan, first edition, Umadevi Publication, India.
- 2. Nanotechnology Assessment and perspective by Professor H. Brune et al., Springer 2015.
- 3. The Handbook of Nanotechnology- Business, Policy and Intellectual Property law by John C. Miller et al., 2004.

Course	DO1	DOI	DO2	PO4	PO5	PO6	DO7	DOP
Outcomes	PO1	PO2	PO3	PO4	P05	POo	PO7	PO8
CO1	\checkmark	\checkmark			\checkmark	\checkmark		
CO2	\checkmark		\checkmark	\checkmark			\checkmark	
CO3	\checkmark	\checkmark	\checkmark		\checkmark			
CO4	\checkmark		\checkmark			\checkmark		
CO5	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark

Semester :III

	Subject Code	Subject title Credit	Lecture	Tutorial	Practical	Туре
Core SBC –	Human Anat	tomy & Physiology 4	5	1	0	Theory

Introduction: This course presents the Basics of Anatomy and Physiology of Human Structure.

Course Outcome

CO1: To understand the structure of Human Body.

CO2: To understand the tissue level of organization.

CO3: To learn the functional activity of Nervous tissue and system.

CO4: To become familiar with Cardiovascular system.

CO5: To learn about Organ and Structure of the Respiratory system.

Unit I:

(12Hrs) An Introduction to the Human Body: Overview of Anatomy and Physiology - Structural Organization of the Human Body - Functions of Human Life - Requirements of Human Life -Homeostasis.

Unit II:

Tissue Level of Organization: Types of Tissues – Epithelial Tissues – Connective Tissue Supports and Protects - Muscle issue and Motion - Nervous Tissue Mediates perception and Response -Tissue Injury and Aging.

Unit III:

Nervous System and Nervous Tissue: Basic structure and Function of the Nervous System -Functional Divisions of the Nervous System - Nervous Tissue - Neurons - Parts of Neurons and types of Neurons – Glial Cells - Functions of the Nervous tissue.

Unit IV:

The Cardiovascular System: Heart - Anatomy, Location, Shape and Size - Structure and Functions of Blood Vessels.

Unit V:

Organs and Structure of the Respiratory System: Conducting Zone - Nose, Pharynx, Larynx, Trachea – Respiratory Zone – Gross Anatomy of the Lung. Digestive System – Overview of the Digestive System – Digestive system process and Regulation.

Reference:

(12 Hrs)

(12Hrs)

(12Hrs)

(12Hrs)

J. Gordon Betts-"Human Anatomy and Physiology", OpenStax, Rice Universiy

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
Outcomes	101	102	105	104	105	100	107	100
CO1	\checkmark	\checkmark			\checkmark	\checkmark		
CO2	\checkmark		\checkmark	\checkmark			\checkmark	
CO3	\checkmark	\checkmark	\checkmark		\checkmark			
CO4	\checkmark		\checkmark			\checkmark		
CO5	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark

Semester :III

Subject CodeSubject titleCreditLectureTutorialPracticalTypeCore II –Lab in Biochemistry4003Practicaland Plant Biotechnology

Introduction: This course presents the Basic and advanced plant tissue culture techniques and enhance the plant based product.

- 1. Aqueous extraction of plant.
- 2. Quantification of carbohydrates and proteins.
- 3. Phytochemical analysis.
- 4. Antioxidant properties.
- 5. Isolation of protease/Rubisco from plant extract.
- 6. Partial purification of protease enzyme.
- 7. Compound separation from TLC.
- 8. Protein separation from SDS PAGE.
- 9. Identification of plant compounds using GCMS.
- 10. Preparation of complex nutrient medium (Murashige&Skoog' s medium).
- 11. To selection, Prune, sterilize and prepare explants for culture.
- 12. Significance of growth hormones in culture medium.
- 13. Callus induction and regeneration of plant.

References:

- 1. Plant genetic engineering, Dodds J.H.
- 2. Plant molecule biology, Grierson and S.V. Convey

3. Molecular biotechnology, Principle and applications of recombinant DNA technology, Bernard R Glick.

Semester :IV

Subject Code Subject title Credit Lecture Tutorial Practical Type Core VII – Immunology & Immunotechnology 4 5 1 0 Theory Introduction: This course presents the Basics of Human Immune system and Antigen Antibody interaction.

Course Outcome

CO1: To understand the Immune system of Human Body.

CO2: To understand the Organs of the Immune system.

CO3: To learn the functional activity and Structure of antibodies.

CO4: To become familiar with Classes of hypersensitive reactions.

CO5: To learn about the Tumor immunology.

Unit I.

Introduction to immune system : Historical perspectives, early vaccination, innate immunity and acquired immunity humoral and cell mediated immunity.Cells of Immune System: Hematopoiesis, Lymphoid cells B & T lymph cytes.N. K. cells, phagocyte, mast cells, Dendritic cells.

Unit II.

[12 Hrs] Organs of the Immune system: Primary lymphoid organs: Thymus, Bonemarrow, secondary lymphoid organs: lymph nodes, spleen, mucosaassociated lymphoid tissue. Antigens: Nature and Properties of antigens: foreigners, molecular size -epitopes : Immune response to Ag, adjuvants, Immune dosage, route of administration super antigens.

Unit III.

Antibodies: Structure of antibodies; classes of Immuno globular, hypervariable regions. Complementary determining regions. Frame workregions. Isotype, allotype and idotypic determinants, immunoglobulinsuperfamily.Antigen - Antibody interactions: Affinity avidity, measure of Ag-Ab binding, cross reactivity: application of Ag-Ab interactions: agglutination reaction: bloodgrouping, RID, ouchterlony, RIA and Elisa, Western blotting.

Unit IV.

Hypersensitivity: Classes hypersensitive reactions. (type-1) IgE-mediatedhypersensitivity intracellular events in most cell degranulation, hamacological agents in type I reactions, type II, hypersensitivity -erylbroblastosisfetalis type - III hypersensitivity - Immuno complex mediatedhypersensitivity -type IV- delayed - type hypersensitivity. Autoimmunity: Maintenance of tolerance, auto immune diseases: organspecific - Hastimoto'sthyroidits, Grave's disease. Systematic autoimmunedisease - multiple sclerosis, Rheumatoid arthritis.

Unit V:

[12 Hrs]

[12 Hrs]

[12 Hrs]

[12 Hrs]

Tumor immunology: Malignant transformation of cells, oncogenes and induction, tumor of immune system - tumor antigens chemically and virally induced tumor antigen, cancer immunotherapy - cytokine therapy -interferons. Tumor necrosis fuctros, monoclonal antibodies and immunotoxins. Monoclonal antibodies and vaccines: Active and passive immunisation, vaccine designs recombinant vector vaccines.

References

1. Immunology by Kuby (2007)

2. Cellular and Molecular Immunology Abul K. Abbas. A.H. Lichtman& Shiv Pillai (2007)

3. Immnobiology: The immune system in Health and Diseases Charles A. Janeway, Paul Trawers Mark Walport and J. Donald Copra

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
Outcomes	POI	PO2	POS	PO4	POS	POo	PO/	POð
CO1	\checkmark	\checkmark			\checkmark	\checkmark		
CO2	\checkmark		\checkmark	\checkmark			\checkmark	
CO3	\checkmark	\checkmark	\checkmark		\checkmark			
CO4	\checkmark		\checkmark			\checkmark		
CO5	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark

Semester :IV

Subject CodeSubject title CreditLectureTutorialPracticalTypeCore VIII –Animal Biotechnology4510TheoryIntroduction:This course presents the Basics of Biology and characterization of cultures cellsand Transgenic animals.

Course Outcome

CO1: To understand the Animal cell organization and Animal cell culture.CO2: To understand the Biology and characterization of cell cultures.CO3: To learn the functional activity of Embryology.CO4: To become familiar with Molecular techniques in cell culture.CO5: To learn about the Transgenic animals, production and applications.

Unit I : [12 Hrs]

Animal cell organization, Animal cell culture – Introduction, equipments and materials for animal cell culture technology, Culture media: preparation, Types: Balanced salt solution and simple growth medium, physical, chemical and metabolic functions of different constituents of culture medium, growth factors, role of carbon dioxide, serum, serum free media and their applications.

Unit II

Biology and characterization of cultures cells, measurement of cell death, types of cell culture: primary and established culture, tissue culture & organ culture, Three dimensional culture, Feeder layer, Disaggregation of tissues and cell separation, cell synchronization, cryopreservation, Apoptosis and necrosis.

Unit III

Embryology – culture and preservation of embryos, Gametogenesis and fertilization in animals, Genetic regulation of embryonic development in Drosophila, Homeotic genes in development.

Unit IV:

Molecular techniques in cell culture: Manipulation of genes – cell cloning and micromanipulation, gene silencing and targeting, cell transformation – physical, chemical and biological methods, Hybridoma technology and applications.

Unit V:

[12 Hrs]

[12 Hrs]

[12 Hrs]

C 11

[12 Hrs]

Transgenics: Transgenic animals – production and applications, Transgenic animals in livestock improvement, transgenics in industries, chimera production. Agua culture: culture techniques, lay out and construction of aqua farm and its marketing, Ethical issues in animal biotechnology.

Text Books:

- Animal Biotechnology: Recent concept & Developments P.Ramadas (2011), MJP Publishers, Chennai.
- 2. Culture of Animal cells: A Manual of basic Techniques R.IanFreshney (2011), A John Wiley & Sons Inc Publications, NY.
- 3. Animal Cell Culture John R W Masters (2000), Oxford University Press, Oxford.

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
Outcomes	FUI	FO2	FUS	r04	105	FU0	FO/	FUð
CO1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
CO4	\checkmark							
CO5	\checkmark							

Semester :IV

Subject Code Subject title Credit Lecture Tutorial Practical Type **Computational Biology** 4 Allied IV – 5 1 Theory 0 Introduction: This course presents the Basics of Computer operation Word, Excel and Power point preparation.

Course Outcome

CO1: To understand the What is Computer and Basic components. CO2: To understand the M S Word. CO3: To learn the MS Excel. CO4: To become familiar with MS Power point. CO5: To learn about the Parts of an Access Window.

UNIT I - INTRODUCTION TO COMPUTER

What is Computer - Evolution - Basic Components - Memory - Software Components - Input / Output Devices - External Storage Devices - Personal Computer - Work Station - Mainframes.

UNIT II - MS - WORD

Introduction – User Interface – Themes and Ouick Styles - Server Components Word Basics: Parts of Word Window - Formatting Features - Menus, Commands, Toolbars and their Icons – MS Word menus in focus - Word Exercise I – Word Exercise II.

UNIT III - MS-EXCEL

Introduction – Entering and Editing Text - Menus, Commands and Toolbars – MS Excel Menus in Focus - Excel Exercise-I – Alternate method - Entering formulas – Formatting Cells, Date Range – Inserting Headers & Footers – Saving a file and opening a file.

UNIT IV - MS-POWER POINT

Creating a new presentation and new slide– Opening a presentation – Deleting a slide, Copying a slide – Numbering the Slides – Saving a presentation – Changing the default directory – Printing a presentation – Working with Power Point – MS Power Point Menus in focus – Formatting in Power Point.

UNIT V - MS-ACCESS

Parts of an Access Window – MS Access Menus in Focus – Starting Microsoft Access – Creating a New Database - Creating Table using Table Wizard - Saving the Database - Creating Tables in design view - Query - Forms - Reports.

TEXT BOOK

(**12Hrs**)

(**12Hrs**)

(12Hrs)

(12Hrs)

(**12Hrs**)

1. Sanjay Saxena, "*MS Office for Everyone*", Vikas Publishing House Pvt. Ltd., New Delhi, 2010, Reprinted 2010,.

2. Sinha P.K., "Computer Fundamentals", BPB Publications, 6th Edition, New Delhi, 2004.

Course	PO1	PO2	PO3	PO4	PO5	PO6	DO7	DOP
Outcomes	POI	PO2	POS	PO4	P05	POo	PO7	PO8
CO1	\checkmark	\checkmark			\checkmark	\checkmark		
CO2	\checkmark		\checkmark	\checkmark			\checkmark	
CO3	\checkmark	\checkmark	\checkmark		\checkmark			
CO4	\checkmark		\checkmark			\checkmark		
CO5	\checkmark			\checkmark		\checkmark	\checkmark	\checkmark

Semester :IV

Subject Code Subject title Credit Lecture Tutorial Practical Type Theory Pharmaceutical Biotechnology4 SEC II – 5 0 1 Introduction: This course presents the Basics of Pharmacology and drug action.

Course Outcome

CO1: To understand the origin and History of Pharmacology.

CO2: To understand the Targets for drug action.

CO3: To learn the functional Mechanism of action of drugs.

CO4: To become familiar with Antimicrobial drugs.

CO5: To learn about the Thyroid and anti thyroid drugs.

UNIT I: [12 Hrs] Pharmacology – origins and antecedents – Pharmacology in the 20th century – Drugs – Sources, dosage forms and routes of administration. Absorption, factors modifying drug absorption, distribution, metabolism – Phase I, II reactions, action of cytochrome P450

Targets for drug action, receptor proteins, ion channel and drug targets, control of receptor expression, assay of drug potency: Chemical, bioassay and immunoassay-Drug tolerance and drug dependence. Principles of basic Pharmacokinetics, Adverse response to drugs, drug intolerance, drug allergy, tachyphylaxis, drug abuse, vaccination against infection, factors modifying drug action and effect.

Mechanism of action of drugs used in therapy of Respiratory systems – cough, bronchial asthma, pulmonary tuberculosis Cancer chemotherapy

Antimicrobial drugs - sulfonamide, trimethoprim, penicillins, aminoglycosides and bacterial resistance.

Thyroid and anti thyroid drugs, insulin and anti diabetic drugs, anti fertility and ovulation inducing drugs.

UNIT III:

Unit IV:

Unit V:

UNIT II:

[12 Hrs]

[12 Hrs]

[12 Hrs]

[12 Hrs]

REFERENCES:

- $1.\ Pharmacology-5 th\ edition-H.P.Rang,\ M.M.Dale,\ J.M.Ritter,\ P.K.Moore$
- 2. The Pharmacology, Volume I and II Goodman and Gillman
- 3. Basic Pharmacology Foxter Cox. Butterworth's 1980
- 4. Pharmacology and Pharmacotherapeutics R.S.Satoskar, S.D. Bhandhakam and S.S. Alinapure

Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
Outcomes	101	102	105	104	105	100	107	100
CO1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
CO2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			
CO4	\checkmark							
CO5	\checkmark							

Semester :IV

Subject CodeSubject title CreditLectureTutorialPracticalTypeCore III –Lab in Animal Biotechnology4003Practicaland Immunology

Introduction: This course presents the Basic and advanced Animal tissue culture techniques and Immunology.

- 1. Method of immunization and bleeding
- 2. Preparation of Anti bodies
- 3. Antigen-anti body reactions
- 4. Immuno diffusion (Single radial, double and rocket)
- 5. Blood grouping
- 6. Preparation of serum from blood
- 7. WIDAL, ASO, CRP
- 8. ELISA- Demonstration
- 9. Washing, sterilization Techniques and Membrane filteration.
- 10. Preparation of complete ACC medium & of serum
- 11. Isolation of peripheral blood monolayer cells.
- 12. Preparation of primary culture from Chicken embryo.
- 13. Trypsinization
- 14. Cell Counting & Viability test
- 15.Cytotoxicity assay

References

- 1. Animal cell culture a practical approach, 4th ED., Freshney. John Wiley Pub.
- 2. Mammalian Cell Biotechnology- A practical approach. ED Butler. Oxford UNI Press.
- 3. Methods in Cell Biology. VOL 57 Animal methods, ED Mather & Barnes, Academic Press.