Page 1 of 57 Regulations 2024

RATHINAM COLLEGE OF ARTS AND SCIENCE

(AUTONOMOUS)

Rathinam Tech Zone, Eachanari, Coimbatore - 641021.

DEPARTMENT OF MATHEMATICS

Syllabus for

M.Sc.Mathematics

(I and II Semester)

2024 - 2025 Batch onwards

Vision and Mission of the Institution

Vision

To emerge as a world-renowned Institution that is integrated with industry to impart Knowledge, Skills, Research Culture and Values in youngsters whocanaccelerate the overall development of India **Mission**

To provide quality education at affordable cost, build academic and research excellence, maintain ecofriendly and robust infrastructure, and to create a team of well qualified faculty who can build global competency and employability among the youth of India

Motto

Transform the youth into National Asset

Vision and Mission of the Department

Vision

The Department aspires to the highest standards of excellence in teaching and service of humanity, through preparing students for learning Applied and Industrial Mathematics for the challenging growth of science and Technology.

Mission

The Mission of the Department is to provide an environment where students can learn and become competent users of Mathematics and Mathematical Application and also to provide quality Education, Research and Consultancy by providing highly skilled mathematical knowledge along with the industrial collaboration.

Motto

Empowering Minds through Mathematics

Program Educational Objectives (PEO)

PEO1	Pursue a career as a globally competent and universally employable professionalin core and related fields in diverse sectors who accelerates the overall development of India.
PEO2	Pursue lifelong learning opportunities including graduate degrees to improve and expand domain specific and professional skills.
PEO3	Advance personally and professionally by accepting professional and societal responsibilities, and pursuing leadership roles.

Mapping of Institute's Mission to PEO

Institute's Mission						
To provide quality education at affordable cost, build academic and research excellence						
maintain eco-friendly and robust infrastructure, and						
To create a team of well qualified faculty who can build global competency and	PEO2,					
employability among the youth of India.	PEO3					

Mapping of Department Mission to PEO

Department Mission	PEO's
Impart Critical thinking ability to become more competency	PEO1, PEO3
Analytical Knowledge with Industry Collabration	PEO1, PEO2
Industry Collabration	PEO2, PEO3
Research Culture	PEO1 PEO2

Program Outcomes (PO):

P01	:	Demonstrate knowledge competency in core discipline
P02	:	Apply the appropriate knowledge and suitable skills in solving the complex problems
P03	:	Conduct investigations of complex problems through various scientific approaches
P04	:	Design solutions for complex and open ended real-life or real-time problems
P05	:	Use appropriate and advanced tools for wide range of practices with an understanding on its
		associated limitations
P06	:	Work effectively and responsibly as a member or a leader in a team
P07	:	Express complex concepts within the profession and with society at large
P08	:	Understand the professional roles and responsibilities
P09	:	Analyze social and environmental aspects of the professional practices
P010	:	Practice higher moral and ethical standards during the discharge of professional duties
P011	:	Incorporate finer finance and business practices in all professional engagements
P012	:	Identify and address their professional development through lifelong learning

Program Specific Outcomes (PSO):

PSO1	:	Solve complex problems by critical understanding, analysis and synthesis.
PSO2	:	Recognize the need to engage in lifelong learning through continuing education and research.
PSO3	:	Inculcate the capacity to transfer the mathematical knowledge for their industrial career.
PSO 4	:	Demonstrate engagement with current research and developments in the subject.

Program Outcomes		PEO 1	PEO 2	PEO 3
P01	•••	3	1	3
P02	•••	3	2	3
P03	•••	1	2	3
P04	•••	3	1	3
P05	•••	3	3	2
P06	:	2	3	3
P07	•••	2	3	1
P08	•••	3	2	1
P09	•••	2	2	3
PO 10	•••	3	2	1
PO 11	•••	2	1	1
PO 12	•••	3	2	2
PSO1	•••	3	2	1
PSO2	•••	2	2	1
PSO3	•••	2	2	1
PSO4	•••	3	3	2
PSO4	•		1	

Correlation between the PO/PSO and the PEOs

3 – Strong correlation; 2-moderate correlation; 1-Less correlation; Blank-no correlation

Components considered for Course Delivery is listed below:

- a. Class room Lecture
- b. Laboratory class and demo
- c. Assignments
- d. Mini Project
- e. Project
- f. Online Course
- g. External Participation
- h. Seminar
- i. Internship

Mapping of POs with Course Delivery:

Program		Course Delivery										
Outcome	а	b	С	d	е	f	g	h	i			
P01	3	3	1	1	2	1	3	3	1			
PO2	3	3	2	3	3	1	1	2	3			
PO3	3	3	1	3	1	1	1	2	3			
PO4	2	3	2	3	3	1	1	3	1			
PO5	3	2	1	3	1	3	3	3	3			
P06	2	3	1	3	3	1	2	3	3			
P07	2	3	1	3	1	1	2	3	3			
P08	2	2	1	2	3	3	2	3	3			
P09	1	1	2	3	3	3	2	3	3			
PO10	2	1	2	3	2	2	2	2	2			
P011	1	1	2	2	2	3	3	3	3			
P012	1	2	3	2	2	2	3	3	3			
PSO1	2	3	1	3	2	3	1	3	3			
PSO2	3	2	2	3	3	2	2	3	2			
PSO3	2	3	3	2	2	3	3	2	3			
PSO4	3	2	2	1	3	2	2	1	2			

3 – Strong correlation; 2-moderate correlation; 1-Less correlation; Blank-no correlation

RATHINAM COLLEGE OF ARTS AND SCIENCE (AUTONOMOUS)

B.SC. MATHEMATICS DEGREE PROGRAMME

M. Sc (MMA) Curriculum Structure - Regulation - 2024

(For students admitted from 2024-2025 and onwards)

Sem	Part	Туре	Sub Code	Subject	Credit	Per Week	CIA	ESE	Total
1.1	3	C1		Core-I	4	5	50	50	100
1.2	3	C2		Core-II	4	5	50	50	100
1.3	3	С3		Core-III	4	5	50	50	100
1.4	3	C4		Core-IV	4	5	50	50	100
1.5	3	SEC 1		Skill - I (Practical / Training)	4	5	50	50	100
1.6	3	ELE 1		Elective-1	4	5	50	50	100
					24	30	350	350	700
2.1	3	C5		Core-V	4	5	50	50	100
2.2	3	C6		Core-VI	4	5	50	50	100
2.3	3	C7		Core-VII	4	5	50	50	100
2.4	3	C8		Core-VIII	4	5	50	50	100
2.5	3	SEC 2		Skill - II (Practical / Training)	4	5	50	50	100
2.6	3	ELE 2		Elective-2	4	5	50	50	100
					24	30	250	250	500
3.1	3	С9		Core-IX	4	6	50	50	100
3.2	3	C10		Core-X	4	6	50	50	100
3.3	3	C11		Core – XI	4	6	50	50	100
3.4	3	SEC 3		Skill - III (Practical / Training)	4	6	50	50	100
3.5	3	ELE 4		Elective-3	4	6	50	50	100
3.6	3	ITR		Internship / Industrial Training (Summer vacation at the end of II semester activity)	2		50	0	50
					22	30	300	250	550
4.1	3	C12		Core-XII	4	6	50	50	100
4.2	3	SEC 4		Skill - IV (Practical / Training)	4	6	50	50	100
4.3	3	ELE 5		Elective-4	4	6	50	50	100
4.4	3	PRJ		Project with Viva-Voce	8	12	100	100	200
					20	30	250	250	500
			Т	DTAL	90	120	1150	1100	2250

	Certificate on Minor Discipline											
S.No.	Sem	Part	Sub Type	Sub Code	Subject	Credit	Hours	INT	EXT	Total		
1	2	6	MD		Course - I	5	2	0	100	100		
2	3	6	MD		Course - II	5	2	0	100	100		
3	4	6	MD		Course - III	5	2	0	100	100		
4	5	6	MD		Course - IV	5	2	0	100	100		

Rathinam College of Arts and Science (Autonomous), Coimbatore-21. For candidates admitted in M.Sc. Mathematics in the academic year 2024-2025 and Onwards

				Core		
S.No.	Sem	Pre- requesite	Course Code	Course Name	Offering Department	Type Theory / Practical
1	1			Abstract Algebra	Mathematics	Theory
2	1			Real Analysis	Mathematics	Theory
3	1			Ordinary Differential Equations	Mathematics	Theory
4	1			Graph Theory	Mathematics	Theory
5	2			Complex Analysis	Mathematics	Theory
6	2			Linear Algebra	Mathematics	Theory
7	2			Partial Differential Equations	Mathematics	Theory
8	2			Mathematical Statistics	Mathematics	Theory
9	3			Topology	Mathematics	Theory
10	3			Functional Analysis	Mathematics	Theory
11	3			Mechanics	Mathematics	Theory
12	4			Fluid Dynamics	Mathematics	Theory

Skill Enhancement Course

S.N o.	Se m	Pre-requesite	Course Code	Course Name	Offering Department	Type Practical / Training
1	1			Latex	Mathematics	Practical
2	2			Matlab	Mathematics	Practical
3	3			Neural Networks	Mathematics	Training
4	4			Object Oriented Programming and Python	Mathematics	Practical

S.N o.	Se m	Pre- requesite	Course Code	Course Name	Offering Department	Type Practical / Training
1	1			Optimization Techniques	Mathematics	Theory
2	1			Mathematical Modelling	Mathematics	Theory
3	1			Fuzzy Logics and System	Mathematics	Theory
4	2			Astronomy	Mathematics	Theory
5	2			Numerical Analysis	Mathematics	Theory
6	2			Number Theory and Cryptography	Mathematics	Theory
7	3			Control Theory	Mathematics	Theory
8	3			Differential Geometry	Mathematics	Theory
9	3			Stochastic Process	Mathematics	Theory
10	4			Mathematical Methods	Mathematics	Theory
11	4			Machine Learning	Mathematics	Theory
12	4			Finite Elements Method	Mathematics	Theory

Elective

Semester I

Course Cod	e	Cours	se Tit	le	Cre	edit		Lectu	ıre	Tu	itorial	Pı	actica	1	Тур	e
			tract		4	1		5			-		-		Cor	e
Course Intr		~	ebra													
			blac t	o nro	vido f	ounda	tion i	n aroi	un and	l to onl	hance t	ha nav	vor of i	done fo	vr colvi	ng tho
problems in			ibles (.0 pro	viue i	Junua		II gi U	up and	i to em	lance t	ne pov		ueas ic	01 20101	ng the
Course Foc			Deve	lopme	ent/E	ntrep	reneu	irshin	/ Em	olovab	ilitv / F	lesear	ch			
			2010	<u></u>		<u></u>			/	bio jub						
Course										_						
Outcomes	On	comp	oletion	1 of th	is cou	rse, st	tuden	ts will	be ab	ole						
CO 1:	-	famil	iarize	and a	pply S	Svlow	's theo	orem a	and Di	irect pi	oducts					
CO 2:						-				_	ynomia		5			
CO 3:			the c								5	0				
CO 4:				-					<u> </u>	ld conc	ept					
CO 5:											elemei	ntary c	anonic	al form	าร	
Unit I:			Theo	× ×	bitt of						0101110	i coli y c			Perio	ds]
Another cou		-		-	w's the	orom	Dir	oct n	oduct	-c						usj
Unit II:			heory		v 5 th			cet pi	Juuci	J.				[12	Perio	del
Euclidean ri					lidoan	ring.	- Poly	momi	al rinc	rs – Pol	vnomi		r tho r			usj
Unit III:		ields	ticula		liucan	ing	- 1 OIy	nonna	ai i iiig	5 - 1 01	ynonna				Perio	del
Extension Fi			ts of n	olyno	miale	- Moi	ranho	ut ro	ote							usj
Unit IV:	-		Theo	-				Julio	513.					[12	Perio	del
Elements of				<u> </u>			licale								reno	usj
Unit V:			zatior											[12	Perio	del
Canonical fo								cnoco	_ Hor	mitian	unitar	wand	norma			
Text Books		TTIAII	guiai	101111	- 11a		IIan	spose	- nei	minian	, unitai	y anu	1101111a	IIIans	norma	10115.
1. I.N.H		oin "T	onics	in Ala	ohra"	(II Ed	lition) nuh	lichod	by Wi	av 201	5				
Content		,111, 1	opies	III Alg	cora	(II LU	incion	J, pub	iisiicu	0y vv1	icy, 201					
Unit I		pter 2	2 -S	ectior	ns 2.11	1 to 2.	13.									
Unit II		apter 3		Section												
Unit III		apter		Sectio	ns 5.1	,5.3 ai	nd 5.5	5.								
Unit IV	: Ch	apter														
Unit V		apter	6 -8	Sectio	ns: 6.4	4,6.8 a	und 6.	10.								
Reference l																
							0				ishing	House,	New D	elhi, 1	988	
		Ŭ	ra", Pi	rentic	e-Hall	, Engl	ewoo	d Cliff	, 1991							
Web Resou																
										in.htm						
A			e.nptel					,								
Mapping of	Cour	se Ou	itcom	ie wit	h Pro	gram	me O	utcor	ne an	d Prog	ramm	e Spec				
Course					n								Pro	•	ne Speo	cific
Outcome	DO1	D02	D02	DO 4	Pro PO5	grami P06			es PO9	D040	D011	DO42	DC01		come	DCO 4
C01	PO1 2	PO2 3	PO3 2	PO4 2	P05	PO6	PO7 2	PO8	P09 2	P010	P011	P012	PSO1	PSO2	PSO3 2	PSO4 3
CO1	2	3		2	2		2	2	2 3			2	_	2	3	
	2 3	3	1 2		2	1 2	2 3	2	3 2	1 2	1 2		2	2	3 2	1
CO3				1								1	1			1
CO4	2	1	1	2	2	3	2	2	3	2	2	2	2	3	2	2
CO5	3	1	2	2	3	2	2	2	2	2	2	2	2	2	2	3

Course Cod	e	Cours	se Titl	le	Cre	edit	Τ	Lectu	ire	Tu	itorial	Pr	actica	1	Тур	e
	R	eal A	nalysi	is	1	4		5			-		-		Cor	е
Course Intr This several varia Course Foct	cours ables.	se pro				0							0	and th	e funct	ions of
Course Foci	15 011	KIII D	evelu	pinen	ty En	hepie	meurs	siip /	Empi	Uyabili	ty / Ke	searci	1			
Course Outcomes	On	comp	letion	ı of th	is cou	rse, st	uden	ts will	l be ab	ole						
CO 1:	То	const	ruct ri	igoroı	ıs ma	thema	itical	proofs	s of ba	isic res	ults in	real an	alysis.			
CO 2:		recogi		he dif	ferenc	e bet	ween	point	wise a	and un	iform o	conver	gence (of a seo	quence	of
CO 3:	То	apply	the co	oncep	t of Fi	unctio	ns of	Sever	al Var	iables	and pro	ove the	eorems			
CO 4:	То	under	stand	the co	oncep	t of Le	besg	ue Me	asure	and its	s prope	rties.				
CO 5:	То	discu	ss abc	out the	eory o	f Lebe	esgue	integ	ration	, Riema	ann Int	egratic	on and	its pro	perties	
Unit I:			nn Sti		-		5	0				5		-	Perio	
Definition a				F		~	rties	of the	integ	ral-Int	egratio	n and	Differe			
of vector fur						prope	,i ties	or the	meg	1 al-1110	cgratio	n anu .	Differe	intiatio	11-11102	Station
Unit II:	-					of Fur	oction	15						[12	Perio	dsl
Uniform co									gence	and	integra	ation-u	niform			
									0		0				018011	in and
Unit III:																
Linear trans																
Unit IV:	cansformation-contraction principle-Inverse function theorem-Implicit function theorem. Lebsegue Measure [12 Periods]															
		Lebsegue Measure [12 Periods] re-Measurable sets and Lebesgue Measure-Measurable functions-Littlewood's Theorem														
Unit V:	- T															dsl
General Leb		•										0		0		
Text Books			<u> </u>													
1. W.Rı	udin,	"Prine	ciples	of Ma	thema	atical	Analy	rsis" M	lcGrav	N –Hill,	, New Y	ork, 19	976.			
2. H.L.F	Roydo	on, "Re	eal An	alysis	" Thir	d Edit	tion, N	Macm i	illan, N	New Yo	ork, 198	38.				
Cont																
	Uni	tI: '	Textb	ook 1	: Ch	apter	6: Pa	ge No.	. 120 -	- 137.						
	Uni	t II:	Textb	ook 1	: Ch	apter	7: Pag	ge No.	143 -	- 165.						
	Uni	t III:	Textb	ook 1	: Ch	apter	9: Pa	ge No.	204 -	- 223.						
	Uni	t IV:	Textb	ook 2	: Ch	apter	3: Pag	ge No.	54 - 2	72.						
	Unit	t V: 1	<u> rextbo</u>	ook 2:	Cha	pter 4	l: Pag	e No.	75 – 8	9.						
Reference H	300k:	s:														
1. R.G.H 2. W.Ri						-			-	-	y and So Hill, Ne				5 .	
Web Resou	rces:															
						ch?v=										
2. http:						· ·		-								
Mapping of	Cour	se Ou	ıtcom	e wit	h Pro	gram	me O	utcor	ne an	d Prog	ramm	e Spec				
Course					_								Pro	ogramn	-	cific
Outcome	DC 1	DCC	DCC	DC 1		gramr				DC10	DOIL	D 0.12	Dest		come	Dec í
<u> </u>	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PS03	PS04
C01	2	3	2	2	2	1	2	3	2	2	1	1	2	1	2	3
CO2	1	2	3	2	2	2	2	2	2	1	1	1	2	3	2	2
CO3	3	2	2	2	1	2	3	3	2	1	2	1	1	2	2	2

Rathinam College of Arts and Science (Autonomous), Coimbatore-21. For candidates admitted in M.Sc. Mathematics in the academic year 2024-2025 and Onwards

CO4	2	1	2	2	2	2	2	2	3	2	2	2	2	2	2	1
CO5	1	2	2	3	3	2	3	2	3	2	2	2	2	1	2	3

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Ordinary Differential Equations	4	5	-	-	Core
constant and solutions of fin	duction ourse develop strop variable coefficient rst order differenti s on: Skill Developn	s and also with al equations	singular points	, to study existe	nce and uniqu	
Course Outcomes	On completion of t	• •				
CO 1: CO 2:	Toestablish the qu To recognize the p systems.					
CO 3: CO 4:	To analyze solutio To formulate Gree To understand and	n's function for	· boundary valu	e problems		math om ati as
CO 5: Unit I:	in this course	is with constan	nt coefficients			[12 Periods]
Wronskian an	• homogeneous e d a formula for Wr	onskian-Non-h	omogeneous eq		two.	-
•	Linear equation and non-homoger nogeneous equatio	neous equation	of order n –Init	-		[12 Periods] or method to
equation – W homogeneous	Linear equation problems -Existen Tronskian and line equation with ana	ce and unique ear dependenc lytic coefficient	eness theorems e – reduction ts-The Legendre	of the order o equation.	to solve a no	eous equation -
Unit IV:	Linear equation				anal assas D	[12 Periods]
Unit V:	n – Second order ed Existence and u	<u>.</u>	<u> </u>	points –Excepti		[12 Periods]
Existence and equation – me approximation Text Books:	uniqueness of solu thod of successive ns and the existenc	itions to first or approximation e theorem.	rder equations: s – the Lipschit:	z condition – co	variable separant	ated – Exact the successive
Ltd., N Contents Unit I :(Chapter 2: Sections	1 to 6.	ary differential (equations (3rd 1	Printing) Pren	itice-Hall of India
Unit III : Unit IV : Unit V :	Chapter 2: Sections Chapter 3: Sections Chapter 4: Sections Chapter 5: Sections	s 1 to 8 (Omit s s 1 to 4 and 6 to	o 8 (Omit sectio			
Reference Bo	oks:					

New Delhi, 1974.

- 3. N.N. Lebedev, Special functions and their applications, Prentice Hall of India, New Delhi, 1965.
- 4. W.T. Reid. Ordinary Differential Equations, John Wiley and Sons, New York, 1971
- 5. M.D.Raisinghania, Advanced Differential Equations, S.Chand& Company Ltd. New Delhi 2001
- 6. B.Rai, D.P.Choudary and H.I. Freedman, A Course in Ordinary Differential Equations, Narosa Publishing House, New Delhi, 2002.

Web Resources:

- 1. <u>http://www.opensource.org</u>
- 2. <u>www.mathpages.com</u>
- 3. <u>http://mathforum.org</u>
- 4. <u>http://ocw.mit.edu/ocwweb/Mathematics</u>

Mapping o	f Cou	rse O	utcon	ie wit	h Pro	gram	me O	utcon	ne an	d Prog	ramm	e Spec	ific Ou	tcome):	-
Course Outcome					Pro	gramı	ne Ou	tcome	s				Pro	0	ne Speo come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
C01	3	2	3	1	2	2	1	1	2	4	1	1	3	1	2	2
CO2	3	1	2	3	2	3	2	2	3	1	1	1	2	1	1	3
CO3	3	1	2	2	3	2	1	1	1	1	2	1	3	1	1	2
CO4	2	2	1	2	3	2	1	1	2	2	2	2	2	1	1	2
CO5	1	1	3	1	3	1	1	2	3	2	2	1	3	1	1	3

Course Cod	le	Cours	se Tit	le	Cre	edit		Lectu	re	Tu	torial	Pr	actical	1	Тур	e
	(Graph	Theo	ory	4	4		5			-		-		Cor	
Course Inti	oduo	ction		-								Р				
This	cour	se pro	ovides	know	vledge	about	the c	concep	ot of g	raphs,	sub gra	aphs, tr	ees, co	nnecti	vity, E	uler
tours, Hami								-								
Course Foc	us or	ı: Skill	l Deve	lopme	ent/ E	ntrepr	eneu	rship	/ Emp	oloyabi	lity / R	lesear	ch			
	-															
Course Outcomes	On	comp	oletior	n of th	is cou	rse, stı	udent	ts will	be ab	le						
CO 1:	То	recal	l the b	asic c	oncep	ots invo	olved	in a g	raph.							
CO 2:	_							0		cations	5.					
CO 3:										sability						
CO 4:		<u> </u>		-		Match										
CO 5:						f plana										
Unit I:	6	araph	S		•	•		Ŭ	•					[12	Perio	dsl
Vertices of				d con	nected	lness,	Degre	ees, O	perati	ons on	graph	s, Blocl	ks, Cut			_
blocks, Bloc							0	, ,			0 1	,	,	1	, L	,
Unit II:	T	rees												[12	Perio	ds]
Elementary	prop	erties	of tre	es, Ce	nters	and Ce	entro	ids, Bl	ock-c	ut poin	t trees	, Indep	endent	cycles	5.	
Unit III:	0	Conne	ctivit	y and	Trav	ersabi	ility							[12	Perio	ds]
Connectivit	y and	line c	onneo	tivity,	, Eulei	rian gr	aph, l	Hamil	toniar	ı graph	IS.					
Unit IV:	N	latch	ings a	nd Co	olouri	ing								[12	Perio	ds]
	ings: Matchings coverings in Bipartite Graphs – Perfect Matchings- Edge colourings: Edge chromatic er – Vizing'stheorem-Vertex Colourings: Chromatic Number – Brook's Theorem /: Planarity [12 Periods]															
Unit V:	Vizing'stheorem-Vertex Colourings: Chromatic Number – Brook's Theorem Planarity [12 Periods]															
			~	Tranho	s Kur	atowel	zi's th	ooror	n					[12	1 0110	usj
Text Books	bhs, outer planar graphs, Kuratowski's theorem															
1. F. H.		Gran	h the	orv. Na	arosa	Publis	hing	House	. New	Delhi	1988					
Conten		, arap		<i>y</i> ,	ui 00u	1 40110		iioube	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20111)	1,001					
Unit I:	Cha	pter 2	2,3: S	ection	s 1,2.	2,2.3,2	.7,3.1	L,3.2,3	.3							
Unit II:																
Unit III:																
Unit IV:		-														
Unit V:		<u>.</u>	1: 5	ection	IS 11.	1,11.2,	11.3.									
Reference			and	V Don	ganat	-han A	tout	a o la c	fCro	ah thac	m. Cn	ingon	2000			
					0	eory S				ph theo	ny, spi	inger,	2000			
					1		- C			tion. Cł	nap- ma	an & H	all/CR(C. 2005	5.	
					-	-	-			tions, l	-		•			
Web Resou							~		-	·						
1. http	s://o	nline	course	es.npte	el.ac.ir	n/noc2	20 ma	a05/p	reviev	N						
-						n/grap		<u></u>		_						
				-		inberg		ls/								
-			-			0.		<u> </u>	ne an	d Prog	ramm	e Snec	ific On	tcome		
						D' unin		4000	ic un	~ 1 1 05	- 411111	- opec				cific
		Course Outcome with Programme Outcome and Programme Specific Outcome: Programme Specific													come	
Course Outcome					Pro	gramm									UIIC	
Course	P01	P02	P03	P04	Prog PO5	gramn PO6	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
Course	P01 3	PO2	PO3 2	P04				PO8	P09	P010 1	P011	PO12	PSO1 2			PSO4 3
Course Outcome		P02		P04			P07		P09		P011				PSO3	
Course Outcome CO1	3		2	PO4			P07	2	P09	1		1	2	PSO2	PSO3	

Rathinam College of Arts and Science (Autonomous), Coimbatore-21.	Page 13 of 57
For candidates admitted in M.Sc. Mathematics in the academic year 2024-2025 and Onwards	Regulations 2024

		CO5	1		2		2			3		1	2	1		2		3	
--	--	-----	---	--	---	--	---	--	--	---	--	---	---	---	--	---	--	---	--

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре								
	Latex	4	5	-	-	Skill Enhancement Course								
documents, li	duction ourse provides kno ke articles, books, d s on: Skill Develop	issertations an	d technical repo	orts.		n quality scientific								
Course Outcomes	On completion of t	his course, stu	dents will be ab	le										
CO 1:	On completion of this course students will be able													
CO 2:	To analyze the nee	d of Latex soft	ware.											
CO 3:	To apply the advar	nced mathemat	tics with Latex t	ools.										
CO 4:	To discuss the cod	ing Series, sym	bols and limits.											
CO 5:	To develop the kn	owledge of invo	estigating and le	arning new LAT	FEX package	e on own.								
List of Topics	s Covered													
Introduction- Mathematical	Text, Symbols a formulas	nd Commands	s- Document L	ayout and Org	anization- I	Display Text and								

Rathinam College of Arts and Science (Autonomous), Coimbatore-21. For candidates admitted in M.Sc. Mathematics in the academic year 2024-2025 and Onwards

Program List

- 1. To illustrate different font sizes in Latex.
- 2. To prepare a title page in Latex document.
- 3. To create the section hierarchy of book environment in Latex.
- 4. To prepare a list using itemize environment in Latex.
- 5. To prepare a table in Latex.
- 6. To prepare a table in Latex with multiple title row.
- 7. To split the equations in Latex.
- 8. To type an equation using left cases and right cases in Latex.
- 9. To type a system of equations in Latex.
- 10. To type given Binomial equations in Latex.

Text Books:

1. H. Kopka and P.W. Daly, "A Guide to LATEX "3rd Edition, Addison – Wesley, UK, 1999.

Reference Books:

- 1. L. Lamport. LATEX: A Document Preparation System, User's Guide and Reference Manual. Addison-Wesley, New York, second edition, 1994.
- 2. Stefan Kottwitz, "LaTeX Beginner's Guide: Create High-quality and Professional-looking Texts, Articles, and Books for Business and Science Using LaTeX" Packt Publishing, 2011.

Web Resources:

- 1. <u>https://www.overleaf.com/learn/latex/Free_online_introduction_to_LaTeX_(part_1)</u>
- 2. https://onlinecourses.swayam2.ac.in/aic20_sp17/preview
- 3. https://www.geo.university/courses/introduction-to-latex

Mapping of	f Cour	se Ou	itcom	e wit	h Pro	gram	me O	utcon	ne an	d Prog	ramm	e Spec	ific Ou	itcome):	
Course													Pro	gramn	ne Speo	cific
Outcome					Pro	gramı	ne Ou	tcome	es					Outo	come	
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
C01	1		3	2			2			1	1	1	3	2		1
CO2		1		3		3	3			1	1			1	2	
CO3	2			2			2	2	3		2	1	1		3	
CO4	1		2			3		3		2		2		2		3
CO5		2		3		2			2		2		1		1	

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Optimization					
	Techniques	4	5	-	-	Elective
Course Intro						
	course provides kr		oncepts of Oper	rations Researc	h with spec	ific applications in
	inear and Dynamic s on: Skill Developr		nourshin / Emr	lovahility / Do	coarch	
Course rocus	S OII. SKIII Developi		ineursnip / Emp	noyability / Re	Search	
Course Outcomes	On completion of t	this course, stu	dents will be ab	le		
CO 1:	To understand the	e concept of Ad	vanced Linear P	rogramming.		
CO 2:	To examine the co	ncept of Intege	r L.P. in a suitat	ole way.		
CO 3:	To construct the p	roblems based	on Classical opt	imization Theo	ry.	
CO 4:	To evaluate the pr		×			
CO 5:	To develop the pro	oblem-solving t	echniques using	g operations res	earch.	
Unit I:	Linear Program	iming				[12 Periods]
Introduction	to L.P. –Graphical	L.P. Solution –	Sensitivity ana	lysis Simplex M	ethod – L.P.	solution space in
-	n –Transition fron	•••	•	-		
	pecial cases in sin		applications. D	ouality – Prima	l and Dual	– relationships -
	plex algorithm for					[40 D 1 1]
Unit II:	Advanced Linea			· · · · · ·	D	[12 Periods]
	ear Programming ion of dual problen			in matrix form	– Decompo	sition algorithm -
Unit III:	Integer Linear I			arammina		[12 Periods]
	nd Dynamic Progra	<u> </u>		<u> </u>	ting plane al	
	gorithm – Determ			• •	.	0
	Backward recursio	•	e programming	needibive ne		
Unit IV:	Numerical Appl	ication				[12 Periods]
Classical optim	mization Theory –	unconstraint –	Necessary and	sufficient Condi	itions –The N	Newton - Raphson
method -cons	strained problems -	- Equality cons	traints (Jacobi n	nethod and Lagr	angian meth	od).
Unit V:	Non-Linear Pro					[12 Periods]
Non - linear p	rogramming - Dire	ct search meth	od –Gradient me	ethod-Separable	e programmi	ng – Quadratic
programming	•					
Text Books:						
	y A Taha, Operat	ions Research	-Seventh Editio	on-Prentice Ha	ll of India	Private Ltd, New
Conte	(2004)					
Unit-I		2 (excluding	2 2 3 and 2 3 3)			
onit i	Chapter 3: 3.1 –	· · ·				
	Chapter:4: 4.2 a					
Unit-I	I: Chapter 7: 7.1.2					
Unit-I	II: Chapter 9: 9.2 a	-	ng 9.2.2 and 9.2	.4).		
	Chapter 10: 10					
	V: Chapter 20: 20					
	7: Chapter 21: 21.1	, 21.2.1, 21.2.2				
Reference Bo			D.			- 10(2
	tzig, Linear Progra s, A Course in Simul	•		•	ess, Princeto	n, 1963.
Z. S.Ross		auon, Macinill	iall, NEW IOFK, .	1770.		
	//nptel.ac.in/cours	200 /111 /105 /1	11105100/			
· · ·	//nptel.ac.in/cours					
	/apmonitor.com/n		<u></u>			
	ourse Outcome w	,	e Outcome and	l Programme S	pecific Out	come:
	carse outcome w		e outcome and	- i ogi unnite o	recine out	

Rathinam College of Arts and Science (Autonomous), Coimbatore-21. For candidates admitted in M.Sc. Mathematics in the academic year 2024-2025 and Onwards

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	ogramn Outo		cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
CO1	3		2			3			3		1	1		2		1
CO2		3		1		2	2			1	1	1	2	3		1
CO3	3			3	1	1		3		1		1	1		2	
CO4		3		2			2	3		2	2	2	3	1		3
CO5	3		2		3				1		2				2	

	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Mathematical Modelling	4	5	-	-	Elective
Course Intro						
	ourse provides kno			models of real-v	vorld system	is, analyze them
-	dictions about beha					
Course Focus	on: Skill Developr	nent/ Entrepre	neurship / Emp	loyability / Res	earch	
Course	On completion of t	his course, stud	dents will be abl	e		
Outcomes	-					
<u>CO 1:</u>	To use mathemati			-	1 1 1	
CO 2:	To interpret num system.	erical results g	iven by program	n in order to p	redict the be	enavior of the
CO 3:	To apply computa analyze scientific		and concepts f	com prerequisit	e mathemati	cal content to
CO 4:	To make predictio mathematical mod	ns of the behav	vior of a given p	hysical system ł	based on the	analysis of its
CO 5:	To construct a ma	-	lel of a given nh	vsical system ar	d analyze it	
Unit I:	Need and Techr				iu allalyze it.	[12 Periods]
	ions requiring M			2	f Mathomat	
	of Mathematical					
	ough Geometry , Al					
Unit II:	Mathematical M					[12 Periods]
	ing rise to Partia					
•	tions – Variational		-		-	
	cure of Partial diffe					
Unit III:	Mathematical	Modelling	through Fun	ctional inte	gral and	[12 Periods]
	Differential-Dif	-				
	Modelling through	-	uations – Mathe	matical Modelli	ng through i	
						ntegral equations
Unit IV:			ential and Differ	ential-Differenc		
	Mathematical M			ential-Differenc		ntegral equations [12 Periods]
N () 1) 1	Programming	lodelling throu	ugh Calculus of	ential-Difference Variations and	d Dynamic	
	Programming Modelling through	Iodelling throu	ugh Calculus of	ential-Difference Variations and namic Programm	d Dynamic	[12 Periods]
Optimization	Programming Modelling through principles and T	Iodelling throu Calculus of Var echniques – N	u gh Calculus of riations and Dyr Mathematical M	ential-Difference Variations and namic Programm	d Dynamic	[12 Periods]
Optimization Mathematical	Programming Modelling through principles and T Modelling through	Iodelling throu Calculus of Var echniques – M Dynamic Prog	ugh Calculus of riations and Dyr Mathematical M ramming.	ential-Difference Variations and namic Programm Iodelling throu	d Dynamic ning : gh Calculus	[12 Periods] of Variations –
Optimization	ProgrammingModelling throughprinciples and TModelling throughMathematical M	Iodelling throu Calculus of Var echniques – M Dynamic Prog Iodelling Math	ugh Calculus of riations and Dyr Mathematical M ramming.	ential-Difference Variations and namic Programm Iodelling throu	d Dynamic ning : gh Calculus	[12 Periods]
Optimization Mathematical Unit V:	ProgrammingModelling throughprinciples and TModelling throughMathematical MMaximum-Entre	Iodelling throu Calculus of Var echniques – M Dynamic Prog Iodelling Math opy Principle	ugh Calculus of riations and Dyr Mathematical M ramming. Iematical Prog	ential-Difference Variations and namic Programm Iodelling throu ramming, Maxi	d Dynamic ning : gh Calculus mum and	[12 Periods] of Variations – [12 Periods]
Optimization Mathematical Unit V: Mathematical	ProgrammingModelling throughprinciples and TModelling throughMathematical M	Iodelling throu Calculus of Var echniques – M Dynamic Prog Iodelling Math opy Principle	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather	ential-Difference Variations and namic Programm Iodelling throu ramming, Maxi natical Modelin	d Dynamic ning : gh Calculus mum and g through No	[12 Periods] of Variations – [12 Periods] on-linear
Optimization Mathematical Unit V: Mathematical Programming	ProgrammingModelling throughprinciples and TModelling throughMathematical MMaximum-EntrModelling through	Iodelling throu Calculus of Var echniques – M Dynamic Prog Iodelling Math opy Principle Linear Program odelling throug	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather	ential-Difference Variations and namic Programm Iodelling throu ramming, Maxi natical Modelin	d Dynamic ning : gh Calculus mum and g through No	[12 Periods] of Variations – [12 Periods] on-linear
Optimization Mathematical Unit V: Mathematical Programming	ProgrammingModelling throughprinciples and TModelling throughMathematical MMaximum-EntreModelling through– Mathematical Me	Iodelling throu Calculus of Var echniques – M Dynamic Prog Iodelling Math opy Principle Linear Program odelling throug	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather	ential-Difference Variations and namic Programm Iodelling throu ramming, Maxi natical Modelin	d Dynamic ning : gh Calculus mum and g through No	[12 Periods] of Variations – [12 Periods] on-linear
Optimization Mathematical Unit V: Mathematical Programming use of princip Text Books:	ProgrammingModelling throughprinciples and TModelling throughMathematical MMaximum-EntreModelling through– Mathematical Me	Iodelling throu Calculus of Var echniques – M Dynamic Prog Iodelling Math opy Principle Linear Program odelling throug ropy.	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather h Maximum Prin	ential-Difference Variations and hamic Programm lodelling throu r amming, Max i matical Modelin hciple – Mathem	d Dynamic ning : gh Calculus mum and g through No natical Mode	[12 Periods] of Variations – [12 Periods] on-linear
Optimization Mathematical Unit V: Mathematical Programming use of princip Text Books: 1. J.N. Ka Contents	Programming Modelling through principles and T Modelling through Mathematical M Maximum-Entr Modelling through – Mathematical M le of Maximum Entr pur, Mathematical	Iodelling throu Calculus of Var echniques – M Dynamic Progr Iodelling Math opy Principle Linear Program odelling throug ropy.	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather h Maximum Prin	ential-Difference Variations and hamic Programm lodelling throu r amming, Max i matical Modelin hciple – Mathem	d Dynamic ning : gh Calculus mum and g through No natical Mode	[12 Periods] of Variations – [12 Periods] on-linear
Optimization Mathematical Unit V: Mathematical Programming use of princip Text Books: 1. J.N. Ka Contents Unit I: C	ProgrammingModelling throughprinciples and TModelling throughMathematical MMaximum-EntraModelling through– Mathematical Mat	Iodelling throu Calculus of Var echniques – M Dynamic Prog Iodelling Math opy Principle Linear Program odelling throug ropy. Modelling, Wile ns 1.1-1.9	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather h Maximum Prin	ential-Difference Variations and hamic Programm lodelling throu r amming, Max i matical Modelin hciple – Mathem	d Dynamic ning : gh Calculus mum and g through No natical Mode	[12 Periods] of Variations – [12 Periods] on-linear
Optimization Mathematical Unit V: Mathematical Programming use of princip Text Books: 1. J.N. Ka Contents Unit I: C Unit II: C	ProgrammingModelling throughprinciples and TModelling throughMathematical MMaximum-EntreModelling through- Mathematical Mee of Maximum Entrepur, Mathematical:hapter 1 : Sectionhapter 6 : Section	Iodelling throu Calculus of Van echniques – M Dynamic Prog Iodelling Math opy Principle Linear Progran odelling throug ropy. Modelling, Wile ons 1.1-1.9 ns 6.1-6.8	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather h Maximum Prin	ential-Difference Variations and hamic Programm lodelling throu r amming, Max i matical Modelin hciple – Mathem	d Dynamic ning : gh Calculus mum and g through No natical Mode	[12 Periods] of Variations – [12 Periods] on-linear
Optimization Mathematical Unit V: Mathematical Programming use of princip Text Books: 1. J.N. Ka Contents Unit I: C Unit II: C Unit III: C	Programming Modelling through principles and T Modelling through Mathematical M Maximum-Entre Modelling through – Mathematical M le of Maximum Entre pur, Mathematical : hapter 1 : Section hapter 6 : Section	Iodelling throu Calculus of Var echniques – M Dynamic Prog Iodelling Math opy Principle Linear Progran odelling throug ropy. Modelling, Wile ns 1.1-1.9 ns 6.1-6.8 s 8.1-8.3	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather h Maximum Prin	ential-Difference Variations and hamic Programm lodelling throu r amming, Max i matical Modelin hciple – Mathem	d Dynamic ning : gh Calculus mum and g through No natical Mode	[12 Periods] of Variations – [12 Periods] on-linear
Optimization Mathematical Unit V: Mathematical Programming use of princip Text Books: 1. J.N. Ka Contents Unit I: C Unit II: C Unit III: C Unit III: C	Programming Modelling through principles and T Modelling through Mathematical M Maximum-Entr Modelling through – Mathematical M le of Maximum Entr pur, Mathematical : hapter 1 : Section hapter 6 : Section hapter 8 : Section hapter 9 : Section	Iodelling throu Calculus of Var echniques – M Dynamic Prog Iodelling Math opy Principle Linear Progran odelling throug ropy. Modelling, Wile ns 1.1-1.9 ns 6.1-6.8 s 8.1-8.3 ns 9.1-9.3	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather h Maximum Prin	ential-Difference Variations and hamic Programm lodelling throu r amming, Max i matical Modelin hciple – Mathem	d Dynamic ning : gh Calculus mum and g through No natical Mode	[12 Periods] of Variations – [12 Periods] on-linear
Optimization Mathematical Unit V: Mathematical Programming use of princip Text Books: 1. J.N. Ka Contents Unit I: C Unit II: C Unit II: C Unit III: C Unit IV: C	ProgrammingModelling throughprinciples and TModelling throughMathematical MMaximum-EntraModelling through– Mathematical Mae of Maximum Entrapur, Mathematical Mapur, Mathematical Mahapter 1 : Sectionhapter 6 : Sectionhapter 9 : Sectionhapter 10 : Section	Iodelling throu Calculus of Var echniques – M Dynamic Prog Iodelling Math opy Principle Linear Progran odelling throug ropy. Modelling, Wile ns 1.1-1.9 ns 6.1-6.8 s 8.1-8.3 ns 9.1-9.3	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather h Maximum Prin	ential-Difference Variations and hamic Programm lodelling throu r amming, Max i matical Modelin hciple – Mathem	d Dynamic ning : gh Calculus mum and g through No natical Mode	[12 Periods] of Variations – [12 Periods] on-linear
Optimization Mathematical Unit V: Mathematical Programming use of princip Text Books: 1. J.N. Ka Contents Unit I: C Unit II: C Unit II: C Unit III: C Unit IV: C Unit V: C	Programming Modelling through principles and T Modelling through Mathematical M Maximum-Entre Modelling through – Mathematical M le of Maximum Entre pur, Mathematical : hapter 1 : Section hapter 6 : Section hapter 8 : Section hapter 9 : Section hapter 10 : Section	Iodelling throu Calculus of Van echniques – M Dynamic Prog Iodelling Math opy Principle Linear Progran odelling throug ropy. Modelling, Wile ns 1.1-1.9 ns 6.1-6.8 s 8.1-8.3 ns 9.1-9.3 ns 10.1-10.4	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather h Maximum Prin ey Eastern Limit	ential-Difference Variations and namic Programm Iodelling throu ramming, Maxi natical Modelin nciple – Mathem	d Dynamic ning : gh Calculus mum and g through No natical Mode 1988.	[12 Periods] of Variations – [12 Periods] on-linear lling through the
Optimization Mathematical Unit V: Mathematical Programming use of princip Text Books: 1. J.N. Ka Contents Unit I: C Unit II: C Unit III: C Unit III: C Unit IV: C Unit V: C Unit V: C EREFERENCE BC	Programming Modelling through principles and T Modelling through Mathematical M Maximum-Entr Modelling through – Mathematical M e of Maximum Entr pur, Mathematical : hapter 1 : Section hapter 6 : Section hapter 8 : Section hapter 9 : Section hapter 10 : Section hapter 10 : Section	Iodelling throu Calculus of Van echniques – M Dynamic Prog Iodelling Math opy Principle Linear Progran odelling throug ropy. Modelling, Wile ns 1.1-1.9 ns 6.1-6.8 s 8.1-8.3 ns 9.1-9.3 ns 10.1-10.4	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather h Maximum Prin ey Eastern Limit	ential-Difference Variations and namic Programm Iodelling throu ramming, Maxi natical Modelin nciple – Mathem	d Dynamic ning : gh Calculus mum and g through No natical Mode 1988.	[12 Periods] of Variations – [12 Periods] on-linear lling through the
Optimization Mathematical Unit V: Mathematical Programming use of princip Text Books: 1. J.N. Ka Contents Unit I: C Unit II: C Unit III: C Unit III: C Unit III: C Unit IV: C Unit V: C EReference Bo	Programming Modelling through principles and T Modelling through Mathematical M Maximum-Entre Modelling through – Mathematical M le of Maximum Entre pur, Mathematical : hapter 1 : Section hapter 6 : Section hapter 8 : Section hapter 9 : Section hapter 10 : Section	Iodelling throu Calculus of Van echniques – M Dynamic Prog Iodelling Math opy Principle Linear Progran odelling throug ropy. Modelling, Wile ns 1.1-1.9 ns 6.1-6.8 s 8.1-8.3 ns 9.1-9.3 ns 10.1-10.4	ugh Calculus of riations and Dyr Mathematical M ramming. nematical Prog mming – Mather h Maximum Prin ey Eastern Limit	ential-Difference Variations and namic Programm Iodelling throu ramming, Maxi natical Modelin nciple – Mathem	d Dynamic ning : gh Calculus mum and g through No natical Mode 1988.	[12 Periods] of Variations – [12 Periods] on-linear lling through the

3. Frank R. Giordano, Maurice D.Weir and William P. Fox, - A first course in mathematical modelling, Thomson Learning, London and New York, 2003.

Web Resources:

- 1. <u>https://nptel.ac.in/courses/111107113</u>
- 2. <u>https://www.openlearning.com/usmmooc/courses/math-modeling-de/?cl=1</u>
- 3. <u>https://archive.nptel.ac.in/courses/111/106/111106131/</u>

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	ogramn Outo	ne Speo come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
C01	1	2	1	3	1	1	1	2	1	1	1	1	3	2	2	1
CO2	1	1	2	1	1	2	1	3	1	1	1	1	3	2	2	2
CO3	1	1	2	1	1	1	2	1	3	1	2	1	1	2	3	2
CO4	2	3	1	1	3	1	1	3	1	2	2	2	1	3	2	2
CO5	1	1	1	2	1	2	1	1	3	1	2	1	2	2	1	2

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Fuzzy Logics and Systems	4	5	-	-	Elective
Course Introd	luction					
	ourse enables the student					
	neasures. An highlight on					red
Course Focus	on: Skill Development/ H	entrepreneu	irsnip / Emplo	yability / Rese	arch	
Course Outcomes	On completion of this cou	ırse, studen	ts will be able			
	To understand the basic	concepts of	Crisp Sets and	fuzzy set and i	ts Operations	
	To analyze the concept of			U	•	
CO 3:	To apply the concept of F	uzzy Measu	res.			
CO 4:	To examine the concept o	of Uncertain	ty and Inform	ation		
CO 5:	To apply the concept of f	uzzy theory	in Real world.			
Unit I:	Crisp Sets and Fuzzy S	ets and its	Operations			[12 Periods]
Introduction-C	Crisp sets: The Notion of	Fuzzy Sets	-basic concep	ts of Fuzzy set	s-Classical Log	ic: complement-
	uzzy interaction–Combin					-
Unit II:	Fuzzy Relations					[12 Periods]
Crisp and Fuz	zzy relations–Binary rel	ations– Bin	ary relations	on a single s	set–Equivalence	and similarity
relations –Com	npatibility on Tolerance F	Relations-Or	derings –Mor	ohism –Fuzzy r	elations Equation	ons.
Unit III:	Fuzzy Measures					[12 Periods]
General discus	sion– Belief and Plausibi	lityMeasure	es-Probability	measures-Poss	sibility and Nec	essitymeasures-
Relationshipar	nongClassesofFuzzyMeas	sures.				
Unit IV:	Uncertainty and Infor	mation				[12 Periods]
• •	ertainty–Measures of Fu				•	
	onfusion–Measures of No		y–Uncertainty	and Informatio	on– Information	and Complexity
-	Uncertainty and informat	tion.				
Unit V:	Applications					[12 Periods]
	d Social Sciences-Engine	ering-Medic	ine-Managem	ent and decisio	on making –Com	puter Sciences-
_	e-Other Applications.					
Text Books:						
Limite	e J. Klir, Tina A. Folger -"F d-Fourth printing-June 19		Jncertainty, ar	nd Information	", Prentice- Hall	of India Private
Contents :						
	apter 1Section 1.3,1.4,apter 2Section 2.2-2.6					
	apter 3 Section 3.1-3.8					
	hapter 4 Section 4.2-4.5					
	hapter 5 Section 5.1-5.4,	5.6				
	apter 6 Section 6.2-6.5					
Reference Bo						
	ıy J Ross, Fuzzy Logic wit ois and H.M. Prade, Fuzzy		• • •			Press, 1994.
Web Resource	es:					
	/ <u>/www.techtarget.com/se</u>					
· · ·	//elearn.nptel.ac.in/shop,		<u>y-sets-logic-an</u>	d-systems-app	lications/	
3. <u>https:/</u>	//nptel.ac.in/courses/108	3104157				

Course Outcome			Pro	ogramn Outo	ne Spec come	cific										
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
CO1	1	1	2	2	2	2	1	3	1	1	2	1	3	2	2	1
CO2	2	3	3	2	2	2	1	1	2	1	1	1	2	2	3	2
CO3	2	2	2	2	2	1	2	1	2	1	2	1	3	1	2	2
CO4	3	2	1	1	2	1	2	2	2	2	2	2	1	2	1	2
CO5	2	2	3	2	1	2	3	2	2	1	2	1	1	2	2	3

Semester II

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Complex Analysis	4	5	-	-	Elective
functions and	duction ourse provides know complex integration. s on: Skill Developr					harmonic
course rocus	Soli. Skill Developi		eneursmp / Emp		scartii	
Course Outcomes	On completion of t	this course, stu	dents will be ab	le		
CO 1:	To recall the conc	ept of analytic	c functions.			
CO 2:	To understand the	e concept of co	mplex integrati	on.		
CO 3:	To apply the conc	1		1	nding theorei	ns.
CO 4:	To examine the se			ts.		
CO 5:	To prove the Rier	nann Mapping	theorem.			
Unit I:	Introduction to t	-				[12 Periods]
Conformality	atinuity – Analytic fu Arcs and closed cu rmations: The Linea	ırves – Analytic	e functions in reg	tions - Conform		Length and Area –
Unit II:	Complex Integra	ation				[12 Periods]
Unit III: The Residue	The Calculus of theorem – The Arg	Residues ument principle			grals. Harmor	[12 Periods] nic functions: The
Unit IV:	d basic Properties –	•		Formula.		[12 Periods]
	heorem –The Tayl inite Products – Car	or Series –The	e Laurent Series	s – Partial frac	tions and Fa	
Unit V:	The Riemann M	apping Theore	m			[12 Periods]
Conformal m rectangle. Text Books:	Proof –Boundary B apping of Polygons	s: The Behavior	at an angle – Th	ie Schwarz –Ch		ula –Mapping on a
Contents : Unit I: Cha Cha	* Complex Analysis pter – 2: Sections apter – 2,3: Sections	1.1 - 1.4 s 2.1 - 2.4, 3.1, 1	3.2 and 3.4			
Unit II: Chap Unit III: Chap Unit IV: Chap Unit V: Chap	ter – 4: Sections 5	1.1 - 1.5, 2.1 - 1.5, 5.1 - 5.3, 6.1 - 6 1.1 - 1.3, 2.1 - 2		4.1		
	L	1.1 – 1.4, 2.1 –				

1. W. Rudin, "Real and Complex Analysis " McGraw-Hill Book Co., 1966. 2.R.V. Churchill & J. W. Brown , "Complex Variables & Applications", Mc.Graw Hill, 1990

Web Resources:

- 1. <u>https://www.mathcity.org/_media/msc/notes/complex-analysis-iqra-liaqat.pdf</u>
- 2. <u>https://youtu.be/_mv0q7-WF4E?si=3FAwT48Bxy9PEJM6</u>
- 3. https://youtu.be/dEu5ie25U0Y?si=ALSny70Jy3Wq2xrQ

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	ogramn Outo		cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
CO1	3	3	2	1	2	1	1	1	1	1	1	1	3	2	1	3
CO2	3	3	3	1	2	1	1	1	1	1	1	1	3	2	1	3
CO3	3	3	2	1	1	1	1	1	1	1	1	1	3	2	1	3
CO4	3	3	2	2	2	1	1	2	1	1	1	2	3	2	2	2
CO5	3	3	2	2	1	1	1	2	1	1	1	2	3	2	2	2

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Linear Algebra	4	5	-	-	Elective
	duction This course	e provides know	ledge about the o	concept of matric	es, vectors, d	ual spaces and
linear transform	nation.					
Course Focus	on: Skill Developr	nont / Entronro	nourchin / Emr	lovability / Doc	aarch	
Course rocus	Soli: Skill Developi	lient/ Entrepre	neursnip / Emp	noyability / Kes		
Course Outcomes	On completion of t	his course, stu	dents will be ab	le		
CO 1:	To recall the basic	concepts of V	vector spaces			
CO 2:	To understand the	1	-	ransformations		
CO 3:	To construct the a	1 6			-	
CO 4:	To classify the co	<u> </u>		nials and Invari	ant subspace	es.
CO 5:	To discuss the con					
Unit I:	Matrices and Ve		I			[12 Periods]
	ear Equations $-M$	A	mentary Row or	erations – Row	- Reduced	
						ion – Computations
concerning Sul						*
Unit II:	The algebra of l	inear transfor	mations			[12 Periods]
The algebra of	linear transformation	ons – Isomorphi	sm of Vector Spa	aces – Represent	ations of Line	ear Transformations
by Matrices - I	Linear Functionals -	The Double Du	al – The Transpo	ose of a Linear T	ransformation	n.
Unit III:	The algebra of p	olynomials				[12 Periods]
						factorization of a
	ommutative rings - int of a (Square) ma					of determinants –
Unit IV:						[12 Periods]
	values – Annihilatin Diagonalization – Di		1	ces – Simultaneo	us triangulati	
Unit V:						[12 Periods]
	I t sums – The Prima	ry Decompositi	on Theorem – C	velie subspaces -	- Cyclic Deco	ompositions and the
Rational Form		i y Decompositi		yene subspaces	Cyclic Deek	shipositions and the
Text Books:						
	fman and Ray Kunz ed, New Delhi , 197	•	ra, Second Editi	on, Prentice – Ha	all of India	
Unit – IV - Ch		to 6.6				
Reference Bo	ooks:					

1. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, New Delhi, 1975.

2. I.S. Luther and I.B.S. Passi, Algebra, Vol.I – Groups, Vol.II- Rings, Narosa Publishing House (Vol.I – 1996, Vol.II- 1999)

3 N. Jacobson, Basic Algebra, Vols. I & II, Freeman, 1980 (also published by Hisdustan Publishing Company)

Web Resources:

- 1. <u>https://physicaeducator.wordpress.com/wp-content/uploads/2018/10/csir-net-gate-mathematical-sciences-linear-algebra-handwritten-notes.pdf</u>
- 2. <u>https://physicaeducator.wordpress.com/wp-content/uploads/2018/10/csir-net-gate-mathematical-sciences-linear-algebra-handwritten-notes-2.pdf</u>
- 3. https://youtu.be/91Xecw00YYI?si=VG7KXVMKxF0W1tWj

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro		ne Spec come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
C01	3	3	3	1	1	1	1	2	1	1	1	1	3	2	2	2
CO2	3	3	2	2	2	1	1	1	1	1	1	1	3	2	2	2
CO3	3	3	2	2	1	1	1	1	1	1	1	1	3	2	2	2
CO4	3	3	3	2	2	1	1	1	1	1	1	1	3	2	2	2
CO5	3	3	2	2	1	1	1	1	1	1	1	1	3	2	2	2

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Partial	4	F			Planting.
	Differential Equations	4	5	-	-	Elective
Course Intro	duction This course	e provides know	ledge about the s	second order and	non linear pa	rtial differential
equations, Lap	lace equation and w	ave equation.				
Course Focus	on: Skill Developr	nent/ Entrepre	eneurship / Emp	loyability / Res	earch	
Course Outcomes	On completion of t	this course, stu	dents will be ab	le		
CO 1:	To recall the basic	c concept of N	Ion Linear parti	al differential e	quation of fi	rst order.
CO 2:	To illustrate the n	on Linear parti	ial differential e	quation of seco	ond order.	
CO 3:	To apply the solut		· · ·			
CO 4:	To examine the co	1 1	1	vith related prob	olems.	
CO 5:	To evaluate the co	±	.			
Unit I:	Nonlinear partia				C1	[12 Periods]
-	od of characteristic	-	ystems of first or	der equations –	Charpit's met	thod- Special types
of first order ec	quations – Jacobi's 1	method.				
Unit II:	Partial different	al equations of	second order:			[12 Periods]
The origin of s	econd-order equation	ons – Linear par	tial differential e	quations with co	onstant coeffic	cients – Equations
	coefficients-Charact	teristic curves o	of second-order of	equations- Chara	cteristics of o	equations in three
variables.						
Unit III:						[12 Periods]
	of linear hyperbolic	•	eparation of var	iables – The me	ethod of inte	gral transforms –
Nonlinear equa	tions of the second	order.				
Unit IV:	Laplace's Equat	ion				[12 Periods]
The occurrence	e of Laplace's eq	uation in physi	ics- elementary	solution of Lap	place's equat	ion – Families of
equipotential st	urfaces - boundary v	alue problems -	– Separation of v	ariables- Probler	ns with axial	symmetry.
Unit V:	The wave equati	on:				[12 Periods]
	e of wave equation		Elementary solu	tions of the one	e-dimensiona	
	branes: Applications		-			
Text Books:		tial Differential	Equations? Mac	unary HEII Deals (7	
Singapore,195	n, "Elements of Par	tial Differential	Equations McC	raw-HIII BOOK C	Jompany,	
Contents :	1.					
contents :						
<u>^</u>	r-2 Sections 2.8 –					
-	er - 3 Sections 3.1, er - 3 Sections 3.8					
	er - 4 Sections 3.8					
	er - 5 Sections 5.1, 5					
Reference Bo	oke					
	U LokenathDebnath	, Partial Differe	ential Equations	for Scientists and	l Engineers, 3	rd Edition. 2007
	Partial Differential		-			

2. L.C.Evans, Partial Differential Equations AMS, Providence, R I, 2003.

Web Resources:

- 1. <u>https://physicaeducator.wordpress.com/wp-content/uploads/2018/10/csir-net-gate-mathematical-sciences-partial-differential-equation-handwritten-notes.pdf</u>
- 2. <u>https://youtu.be/U51lQtlzvA0?si=rMJqzO-gfYJjRvH4</u>

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	ogramn Outo	ne Spec come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
CO1	3	3	3	1	2	1	1	1	1	1	1	1	3	2	2	2
CO2	3	2	2	2	1	1	1	1	1	1	1	1	2	2	1	1
CO3	3	2	1	1	1	1	1	1	1	1	1	2	2	3	2	3
CO4	3	2	1	1	1	1	1	1	1	1	1	2	2	3	2	3
CO5	3	2	2	2	2	1	3	2	1	1	1	2	2	3	2	3

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Mathematical Statistics	4	5	-	-	Elective
	duction This course p	rovides knowle	edge about the fu	indamental conce	epts of Statistics	and its
pplications.						
ourse Focu	s on: Skill Developme	nt/Entrepren	eurship / Empl	oyability / Rese	earch	
	*	,		<u> </u>		
Course	On completion of thi	s course, stud	ents will be able	د د		
Outcomes	-					
CO 1:	To recall the fundan	1				<u>с</u> , .:
CO 2:	To understand the co	1		±		function.
CO 3:	To apply the concep			Â.	ity.	
CO 4: CO 5:	To evaluate the fittin	0	1	oblems.		
	To classify the Anal	ysis of varia	nce.			[40 D · 1]
nit I:	Wariahlaa Diaarata	and continuou	a non dom vonich	lag Distribution	function monor	[12 Periods]
	om Variables - Discrete 1-Probability Density F				· ·	nes-Probability
nit II:						[12 Periods]
iscrete and c	ontinuous probability d	listribution fun	ction and its Mo	ment generating	function - binom	
	stribution and their proj	perties, simple	problem.			
nit III:						[12 Periods]
	, Consistency, efficienc	y and sufficien	cy of estimators	, factorization the	eorem and Rao-B	Blackwell
nit IV:	ner- Rao inequality.					[12 Periods]
	fitting and principles of	of least squares	-fitting of curve	s- straight line-se	econd degree par	
	ion and regression anal			8		
nit V:						[12 Periods]
	nt t-test, F-test, Chi-Squ	are test for inc	dependence of A	ttributes, Analys	is of Variance-O	
ay Classifica	ation.					
'ext Books:						
	V.K.Kapoor, "Fundam	entals of Math	ematical Statistic	cs", Sultan chand	& sons Educatio	nal publishers,
New Delhi(20 .S.P.Gupta, "	Statistical Methods", S	ultan Chand &	sons Education	al publishers. Ne	w Delhi(2015).	
,	, , , , , , , , , , , , , , , , , , ,					
Contents:						
	Text Book-1(Chapter	,				
	: Text Book-1(Chapter I: Text Book-1(Chapter					
	: Text Book-1(Chapter	,				
	: Text Book-2 (Chapte					
eference B	noks					
	ipta&V.K.Kapoor. "Fu	ndamentals of	Applied Statistic	cs". Sultan chand	l& sons. Educati	onal publishers
1. S.C.Gu	ıpta&V.K.Kapoor, "Fu velhi(2012)	ndamentals of	Applied Statistic	cs", Sultan chand	l& sons, Educati	onal publishers
<i>1</i> . S.C.Gu New D	pelhi(2012).					-
 S.C.Gu New D R.S.N. 	elhi(2012). Pillai and V. Bagavath	i, "Statistics",	Sultan chand& s	ons Educational	publishers, New	Delhi(2007).
 S.C.Gu New D R.S.N. G.V. S 	pelhi(2012).	i, "Statistics",	Sultan chand& s	ons Educational	publishers, New	Delhi(2007).

New Delhi(2014).

- R.S. Bhardwaj, "Business Statistics", Anurag Jain For Excel books Publishers, Second Edition, New Delhi(2008).
- 5. D.N. Elhance, "Fundamentals of Statistics", Kitab Mahal Publishers, New Delhi(2002).

Web Resources:

1.http://spartan.ac.brocku.ca/~jvrbik/MATH2P82/Statistics.PDF

2.<u>https://www.dcpehvpm.org/EContent/Stat/FUNDAMENTAL%200F%20MATHEMATICAL%20STATISTICS-</u> S%20C%20GUPTA%20&%20V%20K%20KAPOOR.pdf

3.https://youtu.be/I0u1cecfXQ4?si=X2kzYt93gvGSJMqu

Course Outcome					Pro	gramı	ne Ou	tcome	es				Pro		ne Spec come	rific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
C01	3	1	1	1	1	1	1	1	3	3	3	3	1	1	2	1
CO2	3	3	3	1	1	1	2	2	2	1	2	3	3	2	3	1
CO3	3	3	3	2	1	1	1	2	1	1	2	2	3	2	2	2
CO4	3	3	3	3	2	1	2	2	1	1	3	3	3	2	3	2
CO5	3	1	1	1	2	1	1	1	1	1	2	1	2	2	3	3

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Matlab	4	5	-	-	Elective
	duction This course					uting
environments i	for the purpose of sy	mbolic and num	ierical problem s	olving and visua	lization.	
Course Focus	s on: Skill Developr	nent/ Entrepre	neurship / Emp	olovability / Re	search	
Course Outcomes	On completion of t	this course, stud	dents will be abl	e		
CO 1:	To understand the	basic commer	nts of Matlab.			
CO 2:	To recall the conc	1				
CO 3:	To explain the co	1 1				
CO 4:	To classify the co	Ŧ		1		
CO 5:	To apply the conc	ept of Linear A	Algebra, Finding	g Eigen Values	and Vectors	
Unit I:	Introduction	· · · · · · · · · · · · · · · · · · ·		1 0	1	[12 Periods]
	ATLAB, Input – C Matrices and Vec	1 1 1		-	eneral comn	ands. Interactive
Unit II:	Programming in N		Ind Array opera	lions		[12 Periods]
	Functions – Scrip		ctions files-La	nguage specific	e features –	
objects.				19.19L	10000122	110,0000
Unit III:	Plotting					[12 Periods]
	onal plots - Three-di	mensional plots.	· · · · · · · · · · · · · · · · · · ·			
Unit IV:	Applications					[12 Periods]
Linear Alge Factorizations	bra - Solving a	linear system	ι – Finding E	igen values a	nd Eigen v	ectors – Matrix
Factorizations	5.					
	List of Program	ms				
1. Program	n to solve geometry	and trigonomet	ryproblem.			
2. Program	m to illustrate the ro	w and column v	ector operations	in a givenmatrix.		
3. Program	n to illustrate the cre	eation of sub ma	trix form a given	imatrix.		
4. Program	n for frictionexperin	nent.				
5. Program	m to create vertical b	oar, horizontal b	ar, stairs, stem pl	ots of afunction.		
6. Program	n to create mesh and	d surface plots fo	or a givenfunctio	n.		
7. Program	n to create various v	views of 3Dplots	š.			
8. Program	n to plot a function	and curve corres	sponds to the inte	rpolationmethod		
9. Program	n to calculate value	and finding root	ts of apolynomial	l.		
10. Program	n to determine a fun	ction that best f	its the givendata.			
Text Books:						
	, Getting Started w	with MATLAB	-A Quick Intro	duction for Scie	entists and E	Ingineers, Oxford
University Pro	-					8
Contents:						

Unit I: Chapter 1,3: Sections 1.6.3-1.6.6, 3.1, 3.2

Unit II:Chapter 4: Sections 4.1-4.4.Unit III:Chapter 6: Sections 6.1, 6.2.Unit IV:Chapter 5: Sections 5.1,5.2.

Reference Books:

1. William John Palm, "Introduction to Matlab 7 for Engineers "McGraw-Hill Professional, 2005.

2.Dolores M. Etter, David C. Kuncicky, "Introduction to MATLAB 7 " Prentice Hall, 2004

Web Resources:

- 1. https://kanchiuniv.ac.in/coursematerials/MATLAB%20Programming_Lecture%20Notes.pdf
- 2. <u>https://youtu.be/1XiIZczRyAQ?si=GMBxohpQragoCXiC</u>

Course Outcome		Programme Outcomes												Programme Specific Outcome			
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4	
C01	3	3	2	2	2	1	2	2	2	2	2	1	1	1	3	1	
CO2	3	2	2	2	2	1	1	1	1	1	2	1	2	2	2	2	
CO3	3	2	2	1	1	1	2	2	1	1	1	1	2	2	1	1	
CO4	3	3	2	2	1	1	1	1	1	1	2	2	1	2	1	2	
CO5	1	3	2	1	1	1	1	1	1	1	1	2	2	1	1	1	

Course Cod	е	Cours	e Tit	le	Cre	edit		Lectu	ire	Tu	itorial	Pr	actica	1	Тур	e
		Astro	onomy	y	4	1		5			-		-		Electi	
Course Intr Keplar's law Course Foc	s.													ere, Dip	o-Twili	ght &
Course Outcomes	On	comp	letior	n of th	is cou	rse, st	uden	ts will	be ab	ole						
CO 1:	То	recal	l the (Gener	al des	cripti	on of	Solar	[·] syste	m.						
CO 2:	To day		rstand	d the	conce	ept of	Cel	estial	spher	e and	Diurna	al moti	ion als	o leng	th of t	the
CO 3:	То	apply	the k	knowl	edge	of Tw	vilight	t.								
CO 4:	То	To analyze refraction with respect to tangent formula.														
CO 5:	То	To explain the concept of Kepler's Law.														
Unit I:		[12 Periods]														
General desc	riptio	tion of the Solar system -Comets and meteorites – Spherical trigonometry.														
Unit II:		[12 Periods]														
<u>^</u>	ere –	e – Celestial co – ordinates – Diurnal motion – Variation in length of the day.														
Unit III:		[12 Periods]														
· · ·	ip – Twilight – Geocentric parallax.															
	Jnit IV: [12 Periods]															
	fraction – Tangent formula – Cassini's formula. It V: [12 Periods]															
Unit V: Kepler's law		lation	hotry	oon tri	10.000	ontrio	and m	000 01	amol	20				[[12	Perio	asj
Text Books			Detw		ie ecci	entric		lean ai	lamon	es.						
S.Kumaravel		Sush	eela K	umara	velu '	'Astro	nomy	" (Uni	t I to V	/).						
Reference I																
1.W.M.Smar						tronor	ny ".									
2. Ramachan			Asto	nomy	•											
Web Resou			~	1.1.1	1 4	1001	0000	A (10	10					
1. 2.	-						_			lfway.p	<u>odf</u> vAj5Wf	DV2 41	٨			
2. 3.										N_Ba-g			<u>/v</u>			
Mapping of Course Outcome with Programme Outcome and Programme Specific Outcome:																
Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	•	ne Spec come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
C01	3	1	1	2	1	1	2	1	1	1	1	3	2	1	1	3
CO2	3	3	2	2	1	1	1	1	1	1	1	2	2	1	1	1
CO3	2	3	2	1	1	1	1	2	3	1	1	3	2	2	1	2

Course Outcome		Programme Outcomes												Programme Specific Outcome			
	P01	P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012										PS01	PSO2	PSO3	PSO4		
CO1	3	1	1	2	1	1	2	1	1	1	1	3	2	1	1	3	
CO2	3	3	2	2	1	1	1	1	1	1	1	2	2	1	1	1	
CO3	2	3	2	1	1	1	1	2	3	1	1	3	2	2	1	2	
CO4	3	2	3	2	1	1	1	2	3	2	1	3	3	2	1	3	
CO5	3	2	2	1	1	1	1	2	2	1	1	2	3	2	1	1	

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре						
	Numerical Analysis	4	5	-	-	Elective						
Course Introd	luction											
С Б				11.11. (D	.							
Course Focus	on: Skill Developr	nent/Entrepre	neursnip / Emp	loyability / Res	earch							
Course												
Outcomes	On completion of t	his course, stu	dents will be ab	le								
CO 1 :	To recall the conc	ept of numeri	cal differentiati	on and integrati	on and its a	oplications.						
CO 2:	To understand the	concept of sol	lving system of	equations throu	ugh various i	methods.						
CO 3:	To apply various methods for obtaining a better solution for ODE.											
CO 4 :	To analyze the concept of boundary value problems and characteristic equations.											
CO 5 :	To evaluate the numerical solution of Partial differential equations.											
Unit I:	Solution of system	m of equations				[12 Periods]						
	method – Gauss and					– Matrix inversion						
		ls of Iteration –	Jacobi and Gauss	s Seidal Iteration	– Relaxation	method – Systems						
of Nonlinear eq Unit II:	Solution of nonli	noor aquations				[12 Periods]						
	od – Convergence		thod – Bairstow'	s Method for au	dratic factors							
						order derivatives –						
		0			•							
Divided difference, Central-Difference formulas – Composite formula of Trapezoidal rule – Romberg integration – Simpson's rules.												
Unit III:	Colution of ordin	and differentia				[12 Dominda]						
	Solution of ordin series method – H	•		ds - Rungekutta	methods – M	[12 Periods]						
•	l – Adams Moulton		ied Euler metho	us – RungeRutta	methods – M	lutistep methods –						
Unit IV:	Boundary value		characteristic va	lue problems		[12 Periods]						
The shooting m				_	conditions – C	Characteristic value						
problems – Eig	en values of a matri	x by Iteration –	The power meth	od.								
Unit V:	Numerical soluti	on of partial di	fferential equat	ions:		[12 Periods]						
(Solutio	ons of Elliptic, P	arabolic and H	Iyperbolic partia	al differential e	quations) Re	epresentation as a						
						ace equation – The						
						t heat flow (i) The						
Explicit method	l (ii) The Crank Nic	colson method –	solving the wav	e equation by Fil	nite Differenc	es.						
Text Books:												
	nd P.O.Wheatley, A	Applied Numerio	cal Analysis, 5th	Edition, Addiso	n Wesley, (19	998).						
			2		• • •	,						
Contents:												
Unit I	: Chapter 1: Section	$n_{0} \cdot 1 / 1 + 1 + 1 = 1 = 1$	1									
Unit I	Chapter 5: Sectio											
Unit II :	Chapter 2: Section											
	Chapter 6: Section											
	Chapter 7: Section											
Unit V :	Chapter 7: Section											
	Chapter 8 : Sectio	ons: 8.1 -8.4.										

Reference Books:

1. S.C. Chapra and P.C. Raymond, "Numerical Methods for Engineers" Numerical Methods for Engineers Tata McGraw Hill, New Delhi, (2000)

2. R.L. Burden and J. Douglas Faires, P.W.S.Kent "Numerical Analysis " Publishing Company, Boston (1989), Fourth Edition.

3. S.S. Sastry, "Introductory methods of Numerical Analysis" Prentice Hall of India, New Delhi, (1998).

4. P.Kandasamy et al., "Numerical Methods", S.Chand&Co.Ltd., New Delhi

Web Resources:

1. https://personal.math.vt.edu/embree/math5466/nanotes.pdf

2. <u>https://youtu.be/JPSi-WCOhk4?si=f6DSNmFdju4WTbtv</u>

3. https://youtu.be/M8HrMF1kh3c?si=zYP2LSU1Z0ZdAOsv

Course Outcome		Programme Outcomes												Programme Specific Outcome				
	P01	P01 P02 P03 P04 P05 P06 P07 P08 P09 P010 P011 P012									PSO1	PSO2	PSO3	PSO4				
CO1	3	2	2	2	1	1	2	2	1	1	1	1	2	3	2	2		
CO2	3	2	1	1	1	1	1	2	1	1	1	1	2	3	3	2		
CO3	3	3	3	3	2	1	2	3	3	1	3	3	3	3	3	2		
CO4	3	3	2	2	1	1	2	2	2	1	2	2	3	3	2	2		
CO5	3	3	2	2	1	1	1	1	1	1	1	3	3	3	3	3		

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре						
	Number Theory and Cryptography	4	5	-	-	Elective						
	duction This course	e provides know	ledge about the	concept of divisit	oility, functio	ns, groups and						
basic propertie	S.											
Course Focus	on: Skill Develop	ment/Entrep	reneurship / Em	plovability / Re	esearch							
		, F		<u> </u>								
Course Outcomes	On completion of t	his course, stu	dents will be ab	e								
CO 1:	To recall the basic	c concept of N	umbers and nee	d of Number th	eory.							
CO 2:	To understand the concept of Finite fields and Jacobi symbol.											
CO 3:	To gain knowledge about message authentication and hash functions.											
CO 4:	To acquire skills on fundamentals of cryptography and its application to network security.To acquire skills on maintaining the Confidentiality, Integrity and Availability of a data.											
CO 5:	To acquire skills of	on maintaining	the Confidenti	ality, Integrity a	and Availabi	lity of a data.						
Unit I:						[12 Periods]						
•	d Euclidean algorit itive roots - Applica	•		eorem, Wilson's	Theorem, C	Chinese Remainder						
Unit II:						[12 Periods]						
	Quadratic Residues	– Quadratic Re	ciprocity – The J	acobi symbol.								
Unit III: [12 Periods] Cryptosystems – Enciphering Matrices – Public Key Cryptography – Concepts of Public Key Cryptography –												
Modular Arith		trices – Public	Key Cryptograj	ony – Concepts	of Public Ke	ey Cryptography –						
Unit IV:						[12 Periods]						
^	and Strong Pseudo	A		at factorization a	and factor bas	ses and						
Unit V:	he Continued fractio		ngonum.			[12 Periods]						
	– Basic Facts, Ellip	otic curves Crvp	tosystems, Ellipt	ic curve Factoriz	ation.							
Text Books:	,,,,,		,,									
1."A Course in	Number Theory an	d Cryptography	" by Neal Koblit	z, , Springer – Ve	erlag, New Y	ork,						
 1. "A Course in Number Theory and Cryptography" by Neal Koblitz, , Springer – Verlag, New York, 1987. 												
Contents:												
Unit I:Chapter 1: Sections 1.1-1.4Unit II:Chapter 2: Sections 2.1-2.2Unit III:Chapters 3&4 : Sections 3.1-3.2, 4.1-4.2Unit IV:Chapter 5: Sections 5.1-5.4Unit V:Chapter 6: Sections 6.1-6.2,6.4												
Reference Bo												
 "An Introduction to Theory of Numbers" by Ivan Nivan and HerbertsZucherman, Third Edition Wiley Eastern Limited, New Delhi, 1972. "Introduction to Analytic Number Theory" by Tom Apostol, Narosa Publications, New Delhi. "Elementary Number Theory" by David M. Burton, Wm. C. Brown Publishers, Dubuque, Lowa, 1989. 												

4. "Cryptography and Network Security Principles and Practice" by William Stallings, Prentice Hall, Fifth Edition, New Delhi, 2011.

Web Resources:

- 1. https://youtu.be/VGE78ngNdQE?si=EanUo_g_PNJT7NTS
- <u>https://youtu.be/OjjgAmbhS9c?si=j4oPbksW8nQwfCf3</u>
- 3. https://youtu.be/2aHkqB2-46k?si=zHGuoaoVnn0UlH9C

Course Outcome													Pro	ogramn Outo	ne Speo come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
CO1	3	3	2	2	1	1	2	1	1	1	1	2	3	3	2	2
CO2	3	2	2	2	1	1	1	1	1	1	1	1	3	3	2	3
CO3	3	3	3	3	1	3	3	2	1	1	1	2	3	3	2	3
CO4	3	2	2	2	1	3	2	2	1	1	1	2	3	2	3	3
CO5	2	3	2	2	1	3	2	3	2	1	3	3	3	2	3	3

Semester III

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Topology	4	5	-	-	Elective
Course Intro	duction This course	e provides know	ledge about topo	logical spaces ar	nd continuous	
	compactness, separ					
Course Focus	on: Skill Developn	nent/ Entrepre	neurship / Emp	loyability / Res	earch	
Courses						
Course Outcomes	On completion of t	his course, stud	dents will be abl	e		
CO 1:	To remember the	basic terminol	ogies of Topolo	gy.		
CO 2:	To understand abo	out Connectedr	ness and Compa	ctness with its	limits.	
CO 3:	To apply the idea	of Countability	y and Separation	n Axioms.		
CO 4:	To analyze the con	ncept of regula	r spaces.			
CO 5:	To prove the theory	rems on Comp	lete Metric space	ces.		
Unit I:						[12 Periods]
	aces – Basis for Top Functions – Metric T		der Topology – H	Product Topolog	y – Closed se	ts and Limit Points
Unit II:						[12 Periods]
	and Compactness:				ponents and	path components –
Local connecte	edness – Compact Sp	paces – Limit Po	oint Compactness			
Unit III:						[12 Periods]
	and Separation Az ation Theorem.	xioms: Countal	bility Axioms	– Separation	Axioms Ury	sohn's Lemma –
Unit IV:						[12 Periods]
The Tychonof	f Theorem – Com	pletely regular	spaces – The s	tone-Cech Com	pactification.	
Unit V:						[12 Periods]
Open Topolog	ric Spaces – Compac y – Ascoil's Theorer					es – The Compact-
Text Books:						
1.James R. Mu	nkres, "Topology; A	A First Course"	Prentice Hall of	India Private Lir	nited, New D	elhi, 2000.
Contents:						
Unit I-	Chapter2- section	s 12-20.				
	- Chapter 3- section					
	I- Chapter 4- sectio					
	/- Chapter 5- sectio					
	- Chapter 7- section					
Child (Chapter 8- section					
	-					
Reference Bo						
1. J. Dug Limite	gundji, "Topology", d.).	Allyn and Bac	on, 1966 (Repri	nted in India by	Prentice Ha	ll of India Private

- 2. George F. Simmons, "Introduction to Topology and Modern Analysis", McGraw Hill Book Company, 1963.
- 3. J.L. Kelley, "General Topology", Van Nostrand, Reinhold Co., New York, 1995.
- 4. L. Steen and J. Seebach, "Counter examples in Topology", Holt, Rinehart and Winston, New York, 1970.

Web Resources:

- 1. <u>https://youtu.be/XHKcrs8YaSo?si=U4so00nxYl5C84zh</u>
- 2. https://youtu.be/vv3JNSPKeEU?si=FVjrN36B6EDsrMgd
- 3. <u>https://youtu.be/SXHHvoaSctc?si=Z26aooPxPJPi0J5e</u>

Course Outcome					Pro	gramı	ne Ou	tcome	es				Pro	ogramn Outo	ne Spec come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
C01	3	2	2	3	1	1	1	1	1	1	1	3	3	2	1	3
CO2	3	2	2	1	1	1	1	2	1	1	1	2	2	2	1	3
CO3	3	2	2	2	1	1	2	2	1	1	1	2	3	2	2	2
CO4	3	2	2	2	2	1	2	2	2	2	2	3	2	2	2	3
CO5	3	2	2	2	1	1	2	2	1	1	1	2	2	2	1	3

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Functional Analysis	4	5	-	-	Elective
				nach space, Con	jugate space	and Banach algebra
which is the fu	ndamental concept	for further resear	rch.			
Course Focus	on: Skill Developr	nent/ Entrepre	neurship / Emp	loyability / Res	earch	
Course Outcomes	On completion of t	this course, stud	dents will be abl	le		
	To understand the	concept Bana	och Spaces and	Hahn Banach th	neorem	
	To analyze the C	<u> </u>	Â.			
	To acquire know	00	1	U		to conjugate
	space.	U	21	1	1	5.6
CO 4:	To recall the know	wledge of Ma	trices, Determir	ants of Operato	or.	
CO 5:	To evaluate the fo	ormula for spec	tral radius.			
Unit I:						[12 Periods]
	– The definition and					
– The Hahn-Ba	nach theorem – The	e natural imbedd	ling of N in N**	- The open mapp	oing problem.	
Unit II:						[12 Periods]
	of an operator – Hil	bert spaces – Th	e definition and	some simple pro	perties – Orth	
	Orthonormal sets.	beit spaces In	te definition und	some simple proj		logonar
•						
Unit III:						[12 Periods]
	space H* - The adj	oint of an operat	or – Self-adjoint	operators – Nori	nal and unita	ry operators –
Projections.						
Unit IV:						[12 Periods]
Matrices – Dete	erminants and the sp	pectrum of an op	perator – The spe	ctral theorem.		
Unit V:						[12 Periods]
The definition	and some examples	s of Banach alg	gebra – Regular	and singular elei	nents – Topo	ological divisors of
zero – The spec	ctrum – The formula	a for the spectral	l radius.			
Text Books:	"I		1 4 1			- Laulan 1062
G.F. Simmons	, "Introduction to T	opology and Mc	dern Analysis",	McGraw –Hill B	оок Compan	y, London, 1963.
Contents:						
Unit I: Chapte	er 9: Sections: 46 – 1	50.				
Unit II: Chapte	er 10: Sections: 51 -	- 54.				
Unit III: Chapte	er 10: Sections: 55 -	- 59.				
Unit IV: Chapt	ter 11: Sections: 60	- 63.				
-	er 12: Sections: 64					
_						
Reference Bo		int Course in F		22 Duenting II 11		11: 1097
	& G. Pedrick, "A F		-			.mi, 1987.
	and L. Narici, "Fur ik and V. I. Sobolev	•				proportion New

3. L.A. Lusternik and V.J. Sobolev, "Elements of Functional Analysis", Hindustan Publishing Corporation, New Delhi, 1971.

4. A.E.Taylor,"Introduction to Functional analysis", John Wiley and Sons, Newyork, 1958.

Web Resources:

- 1. https://youtu.be/nE67uQPfRbI?si=5Kc9rGpTNivoLlh3
- 2. <u>https://youtu.be/OonaUALrKUk?si=EEuy4yZcfqE_7KBP</u>
- 3. <u>https://youtu.be/yDdxFBcvSGw?si=jMTA75YlvpF-9KVV</u>

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro		ne Spec come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
C01	3	2	2	2	1	1	1	1	1	1	1	2	3	2	2	2
CO2	2	3	2	2	1	1	1	1	1	1	1	2	2	2	1	2
CO3	2	2	2	2	1	1	1	1	1	1	1	2	2	1	1	2
CO4	3	3	3	2	1	1	2	2	1	1	1	1	3	2	3	3
CO5	3	3	3	3	1	1	1	1	2	2	1	2	3	3	3	3

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Mechanics	4	5	-	-	Elective
	duction This cours cts of advanced mat		wledge about ba	asic concepts of	Mechanics,	which is one of the
	on: Skill Developn		neurship / Emp	loyability / Res	earch	
Course	On completion of t	hig gourgo stu	donta will be ab	0		
Outcomes	on completion of t	ills course, stu	uents will be ab	e		
CO 1:	To recall the basic	concepts of 1	nechanical syst	em.		
CO 2:	To understand the				ivations.	
CO 3:	To evaluate the co	-	-			
	To examine the c	-	-	-		
CO 5:	To apply the conc	ept of Canoni	cal Transforma	tions.		
Unit I:	Introductory Co	1				[12 Periods]
Mechanical sys	stem – Generalized	Coordinates – C	onstraints –Virtu	al Work – Energ	y and Mome	ntum.
Unit II:	Lagrange's Equ	ations				[12 Periods]
Derivations of	Lagrange's Equation	ns – Examples -	-Integrals of Mot	ion.		
Unit III:	Hamilton	's Equations				[12 Periods]
Hamilton's Pri	nciple – Hamilton's	Equations.				
Unit IV:		1 – Jacobi Theo	U U			[12 Periods]
	nciple function – Ha		Equation – Sepa	rability.		
Unit V:	Canonical Trans					[12 Periods]
Differential for	ms and Generating	Functions – Lag	grange and Poisso	on Brackets.		
Text Books:						
D.T. Greenwoo	d, "Classical Dynam	ics" Dover Publ	ication, New Yor	k, 1997.		
Contents:						
L	r 1: Sections $1.1 - 1$					
	er 2: Sections $2.1 - 2$ er 4: Sections $4.1 - 2$					
·	ter 5: Sections $5.1 - $					
	er 6: Sections 6.1, 6					
-						
Reference Bo						
1. F. Gantmach	ner, "Lectures in Ana	alytic Mechanic	s" MIR Publishe	rs, Moscow, 197	5.	
2. I.M. Gelfand	l and S.V. Fomin, "	Calculus of Var	riations", Prentice	e Hall.		
3. S.L. Loney,	"An Elementary Tre	eatise on Statics	" Kalyani Publis	ners, New Delhi,	1979.	
Web Resources	:					
1.	https://archive.npt	tel.ac.in/courses	5/115/105/11510	5098/		
2.	https://theoreticalm				fall	
3.	https://www.damt				_	
4.	https://math.ucr.e					
Mapping of C	ourse Outcome w			l Programme S	pecific Outo	come:

Rathinam College of Arts and Science (Autonomous), Coimbatore-21. For candidates admitted in M.Sc. Mathematics in the academic year 2024-2025 and Onwards Page 41 of 57 Regulations 2024

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	ogramn Outo	ne Spec come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
CO1	3	2	2	2	1	1	1	1	1	1	1	1	2	2	1	3
CO2	3	2	2	2	1	1	1	2	1	1	1	3	3	2	2	3
CO3	3	2	2	2	1	1	1	2	2	1	1	3	3	2	1	3
CO4	3	2	3	2	2	1	2	2	1	1	1	2	2	3	2	3
CO5	3	3	2	3	1	1	3	2	3	1	1	1	3	2	2	3

Neural Networks 4 5 - - Elective Course Introduction To know the main fundamental principles and techniques of neural network systems and investigate the principal neural network models and applications. Acquire in-depth knowledge in Nonlinear dynamics. Apply neural networks to classification and generalization problems Course Focus ou: Skill Development/ Entrepreneurship / Employability / Research	Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
To know the main fundamental principles and techniques of neural network systems and investigate the principal neural network models and applications. Acquire in-depth knowledge in Nonlinear dynamics. Apply neural networks to classification and generalization problems Course Focus on: Skill Development/ Entrepreneurship / Employability / Research Course On completion of this course, students will be able Course On completion of this course, students will be able Co1: To understand the fundamental of neuron models CO2: To analyze the Perceptron Architecture CO3: To apply the linear associator in Supervised Hebbian Learning. CO4: To understand the back propagation in neural networks CO5: To examine the condition for performance optimality Unit II: Neuron Model and Network Architectures: I12 Periods] Mathematical Neural Model-Network Architectures: Unit II: Perceptron Architectures Unit II: Supervised Hebbian Learning			4	5	-	-	Elective
principal neural network models and applications. Acquire in-depth knowledge in Nonlinear dynamics. Apply neural networks to classification and generalization problems Course Focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Course focus on: Skill Development/Entrepreneurship / Employability / Research Unit II: Neuron Model and Network Architectures Perceptron Architectures and Learning Rules with proof of convergence. [12 Periods] Unit III: Supervised Hebbian Learning [12 Periods] Multilayer Perceptron Architectures a	Course Intro	luction					
networks to classification and generalization problems Course Focus on: Skill Development/Entrepreneurship / Employability / Research Course On completion of this course, students will be able Co 1: To understand the fundamental of neuron models CO 2: To analyze the Perceptron Architecture CO 3: To apply the linear associator in Supervised Hebbian Learning CO 4: To understand the back propagation in neural networks CO 5: To examine the condition for performance optimality Unit 1: Neuron Model and Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures. [12 Periods] Mathematical Neural Model-Network Architectures. [12 Periods] Mathematical Neural Model-Network Architectures. [12 Periods] Unit 11: Supervised Hebbian Learning [12 Periods] Unit 11: Supervised Hebbian Learning [12 Periods] Unit 11: Supervised Hebbian Learning [12 Periods] Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization-Performances surfaces and optimum points-Taylor series. [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality-Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. Text Books 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents: Unit-11: Chapter 2 Unit-11: Chapter 7 Unit-11: Chapter 11.8.1.8.2 Unit-11: Chapter 7 Unit-11: Chapter 11.8.1.8.2 Unit-11: Chapter 7 Unit-11: Chapter 7 Unit-11: Chapter 7 Unit-11: Chapter 11.8.1.8.2 Unit-11: Chapter 3 Unit-11: Chapter 3 Unit-11: Chapter 4 Unit-11: Chapter 4 Unit-11: Chapter 7 Unit-11: Chapter 4 Unit-11: Chapter 7 Unit-11: Chapter 11.8.1.8.2 Unit-11: Chapter 7 Unit-11: Chapter 7 Unit-11				-		-	-
Course Focus on: Skill Development/ Entrepreneurship / Employability / Research Course On completion of this course, students will be able Out comes On completion of this course, students will be able CO 1: To understand the fundamental of neuron models CO 2: To analyze the Perceptron Architecture CO 3: To apply the linear associator in Supervised Hebbian Learning CO 4: To understand the back propagation in neural networks CO 5: To examine the condition for performance optimality Unit 1: Neuron Model and Network Architectures: Mathematical Neural Model-Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Unit 1I: Supervised Hebbian Learning Unit 1I: Supervised Hebbian Learning Unit V: Back Propagation Unit V: Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. Unit V: Performance optimizations [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. Text Contents: Unit I: Chapter 2 </td <td></td> <td></td> <td></td> <td></td> <td>n knowledge in N</td> <td>onlinear dyna</td> <td>amics. Apply neural</td>					n knowledge in N	onlinear dyna	amics. Apply neural
Course Outcomes On completion of this course, students will be able C0 1: To understand the fundamental of neuron models C0 2: To analyze the Perceptron Architecture C0 3: To apply the linear associator in Supervised Hebbian Learning C0 4: To understand the back propagation in neural networks C0 5: To examine the condition for performance optimality Unit I: Neuron Model and Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Unit II: Perceptron Architectures [12 Periods] Unit III: Supervised Hebbian Learning [12 Periods] Unit III: Supervised Hebbian Learning [12 Periods] Unit V: Back Propagation [12 Periods] Multilayer Perceptrons - Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. [12 Periods] Unit V: Performance apterosary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient.	networks to cla	assification and gene	eralization probl	ems			
Outcomes On completion of this course, students will be able C0 1: To understand the fundamental of neuron models C0 2: To analyze the Perceptron Architecture C0 3: To analyze the Perceptron Architectures C0 4: To understand the back propagation in neural networks C0 5: To examine the condition for performance optimality Unit I: Neuron Model and Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Unit II: Perceptron Architectures [12 Periods] Unit III: Supervised Hebbian Learning [12 Periods] Linear Associator-The Hebb Rule-Pseudo inverse rule-Variation of Hebbian Learning. [112 Periods] Unit IV: Back Propagation [12 Periods] Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. [12 Periods] Directional derivatives-Minima-Mecessary conditions for optimality- Quadratic functions-Performance optimizations. [12 Periods] Directional derivatives-Minima-Mecessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. Texe Books:	Course Focus	on: Skill Developn	nent/ Entrepre	eneurship / Emp	loyability / Res	earch	
Outcomes On completion of this course, students will be able C0 1: To understand the fundamental of neuron models C0 2: To analyze the Perceptron Architecture C0 3: To analyze the Perceptron Architectures C0 4: To understand the back propagation in neural networks C0 5: To examine the condition for performance optimality Unit I: Neuron Model and Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Unit II: Perceptron Architectures [12 Periods] Unit III: Supervised Hebbian Learning [12 Periods] Linear Associator-The Hebb Rule-Pseudo inverse rule-Variation of Hebbian Learning. [112 Periods] Unit IV: Back Propagation [12 Periods] Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. [12 Periods] Directional derivatives-Minima-Mecessary conditions for optimality- Quadratic functions-Performance optimizations. [12 Periods] Directional derivatives-Minima-Mecessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. Texe Books:							
CO 2: To analyze the Perceptron Architecture CO 3: To apply the linear associator in Supervised Hebbian Learning CO 4: To understand the back propagation in neural networks CO 5: To examine the condition for performance optimality Unit 1: Neuron Model and Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures-Perceptron- Hamming Network-Hopfield Network-Learning Rules. [12 Periods] Unit 11: Perceptron Architectures [12 Periods] Unit 11: Supervised Hebbian Learning [12 Periods] Unit 11: Back Propagation [12 Periods] Unit 11: Back Propagation in algorithm-convergence. Unit 11: Unit 11: Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. [12 Periods] Unit 12: Back Propagation algorithm-convergence and Generalization- Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. [12 Periods] Unit 12: Performance surface and performance optimizations for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. [12 Periods] Unit-11: Chapter 2 Unit-12: Unit-12: Unit-12: Chapter 4 <t< td=""><td></td><td>On completion of t</td><td>his course, stu</td><td>dents will be ab</td><td>le</td><td></td><td></td></t<>		On completion of t	his course, stu	dents will be ab	le		
CO 3: To apply the linear associator in Supervised Hebbian Learning CO 4: To understand the back propagation in neural networks CO 5: To examine the condition for performance optimality Unit 1: Neuron Model and Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures-Perceptron- Hamming Network-Hopfield Network-Learning Rules. [12 Periods] Unit 1: Perceptron Architectures [12 Periods] Perceptron Architectures and Learning Rules with proof of convergence. [12 Periods] Unit 11: Supervised Hebbian Learning [12 Periods] Linear Associator-The Hebb Rule-Pseudo inverse rule-Variation of Hebbian Learning. [12 Periods] Unit V: Back Propagation [12 Periods] Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization- Performance surface and performance optimizations [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. [12 Periods] Text Books: 1. Inartin : Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. New Delhi, 2002. Contents : Unit V: Chapter 11,8,1,8,2 Unit-V: Chapter 3,8,2,0,8,9	CO 1:	To understand the	e fundamental	of neuron mod	els		
CO 4: To understand the back propagation in neural networks CO 5: To examine the condition for performance optimality Unit I: Neuron Model and Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Perceptron Architectures and Learning Rules with proof of convergence. [12 Periods] Unit II: Supervised Hebbian Learning [12 Periods] Linear Associator-The Hebb Rule-Pseudo Inverse rule-Variation of Hebbian Learning. [12 Periods] Multilayer Perceptrons - Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. [12 Periods] Unit V: Performance surface and performance optimizations [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newtor's method-Conjugate Gradient. [12 Periods] Text Books: . . . 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. . Contents : . . . Unit-I: Chapter 1, 8, 1	CO 2:	To analyze the Pe	rceptron Archi	tecture			
C0 5: To examine the condition for performance optimality Unit I: Neuron Model and Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: Perceptron Hamming Network-Hopfield Network-Learning Rules. Unit II: Perceptron Architectures [12 Periods] Perceptron Architectures and Learning Rules with proof of convergence. Unit II: Supervised Hebbian Learning [12 Periods] Linear Associator-The Hebb Rule-Pseudo inverse rule-Variation of Hebbian Learning. Unit IV: Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. Unit V: Perconds] Unit V: Performance surface and performance optimizations [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. Text Books: 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-II: Chapter 1 Unit-II: Chapter 1 Unit-II: Chapter 1 Unit-II: Chapter 1 N.B.1, B.2 Unit-II: Chapter 1 Unit-II: Chapter 1 Unit-II: Chapter 3 Unit-II: Chapter 1 Stage 2 Vinit-III: Chapter 4 Unit-III	CO 3:	To apply the linea	r associator in	Supervised Heb	bian Learning		
Unit I: Neuron Model and Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Mathematical Neural Model-Network Architectures: [12 Periods] Nathematical Neural Model-Network Architectures: [12 Periods] Nules: [12 Periods] Perceptron Architectures and Learning Rules with proof of convergence. [12 Periods] Unit II: Supervised Hebbian Learning [12 Periods] Linear Associator-The Hebb Rule-Pseudo inverse rule-Variation of Hebbian Learning. [12 Periods] Unit IV: Back Propagation [12 Periods] Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. [12 Periods] Text Books: 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-II: Chapter 2 Unit-II: Chapter 4 Unit-II: Chapter 4 Unit-III: Chapter 7 Unit-III: Chapter 7. Unit-II: Chapter 8.5-8.20& 9 [1 James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Technique	CO 4:	To understand the	e back propaga	ition in neural n	etworks		
Mathematical Neural Model-Network Architectures-Perceptron- Hamming Network-Hopfield Network-Learning Rules. Init II: Perceptron Architectures [12 Periods] Perceptron Architectures and Learning Rules with proof of convergence. [12 Periods] Unit II: Supervised Hebbian Learning [12 Periods] Linear Associator-The Hebb Rule-Pseudo inverse rule-Variation of Hebbian Learning. [12 Periods] Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. [12 Periods] Dirt V: Performance surface and performance optimizations [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. Text Books: 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. New Delhi, 2002. Contents : Unit-II: Chapter 7 Unit-II: Chapter 7 Unit-II: Chapter 7 Unit-II: Chapter 7 Unit-II: Chapter 7 Unit-IV: Chapter 8.5-8.20& 9 Performance A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. Reference Books 1. James A. Freeman, David M. Skapura, Neural Network, McGraw-Hill International Edition, 1997. Web Resources:	CO 5:	To examine the co	ondition for pe	rformance opti	mality		
Rules. [12 Periods] Perceptron Architectures and Learning Rules with proof of convergence. [12 Periods] Perceptron Architectures and Learning Rules with proof of convergence. [12 Periods] Linear Associator-The Hebb Rule-Pseudo inverse rule-Variation of Hebbian Learning. [12 Periods] Unit IV: Back Propagation [12 Periods] Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. [12 Periods] Unit V: Performance surface and performance optimizations for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. [12 Periods] Text Books: I. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-II: Chapter 2 Unit-II: Chapter 4 Unit-IV: Chapter 11,8.1,8.2 Unit-IV: Chapter 11,8.1,8.2 Unit-IV: Chapter 11,8.1,8.2 Unit-V: Chapter 11,8.1,8.2 Unit-V: Chapter 11,8.1,8.2 Init-V: Chapter 11,8.1,8.2 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. Reference Books 1. James A. Freeman, David M. Skapura, Neural Network, McGraw-Hill International Edition, 1997. Web Resources:	Unit I:	Neuron Model and	d Network Archi	tectures:			[12 Periods]
Unit II: Perceptron Architectures [12 Periods] Perceptron Architectures and Learning Rules with proof of convergence. [12 Periods] Unit III: Supervised Hebbian Learning [12 Periods] Linear Associator-The Hebb Rule-Pseudo inverse rule-Variation of Hebbian Learning. [12 Periods] Unit IV: Back Propagation [12 Periods] Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. [12 Periods] Unit V: Performance surface and performance optimizations [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. Text Books: 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-II: Chapter 2 Unit-II: Chapter 4 Unit-II: Chapter 7 Unit-V: Chapter 11,8.1,8.2 Unit-IV: Chapter 11,8.1,8.2 Vinit-IV: Chapter 7 Unit-V: Chapter 8.5-8.20& 9 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:		Neural Model-Netv	work Architectu	res-Perceptron-	Hamming Netw	ork-Hopfield	Network-Learning
Unit III: Supervised Hebbian Learning [12 Periods] Linear Associator-The Hebb Rule-Pseudo inverse rule-Variation of Hebbian Learning. [12 Periods] Unit IV: Back Propagation [12 Periods] Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. [12 Periods] Unit V: Performance surface and performance optimizations [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. [12 Periods] Text Books: 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-II: Chapter 2 Unit-II: Chapter 7 Unit-IV: Chapter 14. Unit-IV: Chapter 14. Unit-IV: Chapter 15. Reference Books 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources: Web Resources: 1. Web Resources: 1.	Unit II:	Perceptron Archite	ectures				[12 Periods]
Linear Associator-The Hebb Rule-Pseudo inverse rule-Variation of Hebbian Learning. Ite Variation of Hebbian Learning. Unit IV: Back Propagation [12 Periods] Multilayer Perceptrons Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. Unit V: Performance surface and performance optimizations [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. Text Books: 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-II: Chapter 2 Unit-II: Chapter 7 Unit-II: Chapter 7 Unit-IV: Chapter 11,8.1,8.2 Unit-IV: Chapter 11,8.1,8.2 Unit-V: Chapter 8.5-8.20& 9 Performance Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:	Perceptron Arc	hitectures and Lear	ning Rules with	proof of converg	ence.		
Unit IV: Back Propagation [12 Periods] Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization- Performances surfaces and optimum points-Taylor series. Unit V: Performance surface and performance optimizations [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. [12 Periods] Text Books: 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-II: Chapter 2 Unit-II: Chapter 7 Unit-IV: Chapter 11,8.1,8.2 Unit-IV: Chapter 8.5-8.20& 9 Reference Books 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:	Unit III:	Supervise	d Hebbian Learr	ning			[12 Periods]
Multilayer Perceptrons -Back Propagation algorithm-convergence and Generalization Performances Surfaces and optimum points-Taylor series. Il 2 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. Text Books: 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-I: Chapter 2 Unit-I: Chapter 4 Unit-I: Chapter 7 Unit-V: Chapter 7 Unit-V: Chapter 11,8.1,8.2 Unit-V: Chapter 8.5-8.20& 9 Reference Books 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:				ule-Variation of H	lebbian Learning.		
surfaces and performance optimizations [12 Periods] Unit V: Performance surface and performance optimizations for optimality- Quadratic functions-Performance optimizations-beepest Descent Newton's method-Conjugate Gradient. Text Books: Image: New Delhi, 2002. Contents: Unit-I: Chapter 2 Unit-I: Chapter 2 Unit-I: Chapter 7 Unit-I: Chapter 7 Unit-I: Chapter 11,8.1,8.2 Unit-V: Chapter 11,8.1,8.2 Image: New Delhi 2008. Reference Second 2003. Second 2003. Second 2003. Second 2003. 1. James A. Freeman, David M. Skapura, Neural Network, McGraw-Hill International Edition, 1997. Second 2003. Second 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Second 2003. Second 2003.			~				
Unit V: Performance surface and performance optimizations [12 Periods] Directional derivatives-Minima-Necessary conditions for optimality- Quadratic functions-Performance optimizations-Steepest Descent Newton's method-Conjugate Gradient. Text Books: 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-II: Chapter 2 Unit-II: Chapter 7 Unit-II: Chapter 7 Unit-V: Chapter 11,8.1,8.2 Unit-V: Chapter 8.5-8.20& 9 Reference Books 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997.				on algorithm-cc	onvergence and	Generalizati	on- Performances
optimizations-Steepest Descent Newton's method-Conjugate Gradient. Text Books:		1		ance optimizatio	าร		[12 Periods]
Text Books: 1. Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-I: Chapter 2 Unit-II: Chapter 4 Unit-III: Chapter 7 Unit-V: Chapter 11,8.1,8.2 Unit-V: Chapter 8.5-8.20& 9 Reference Books 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:	Γ	Directional derivative	es-Minima-Nece	essary conditions	for optimality- Q	uadratic fund	tions-Performance
 Martin T. Hagan, Howard B/Demuth and Mark Beale, Neural Network Design, Vikas Publishing House, New Delhi, 2002. Contents : Unit-I: Chapter 2 Unit-II: Chapter 4 Unit-III: Chapter 7 Unit-IV: Chapter 11,8.1,8.2 Unit-V: Chapter 8.5-8.20& 9 Reference Books I James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. 	optimizations-S	Steepest Descent Ne	ewton's method	-Conjugate Gradi	ent.		
New Delhi, 2002. Contents : Unit-l: Chapter 2 Unit-li: Chapter 4 Unit-li: Chapter 7 Unit-IV: Chapter 11,8.1,8.2 Unit-V: Chapter 8.5-8.20& 9 Reference Books 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:	Text Books :						
Unit-I: Chapter 2 Unit-II: Chapter 4 Unit-III: Chapter 7 Unit-IV: Chapter 11,8.1,8.2 Unit-V: Chapter 8.5-8.20& 9 Reference Books 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:			ard B/Demuth a	and Mark Beale,	Neural Network	Design, Vikas	Publishing House,
Unit-II: Chapter 4 Unit-III: Chapter 7 Unit-IV: Chapter 11,8.1,8.2 Unit-V: Chapter 8.5-8.20& 9	Contents :						
Unit-III: Chapter 7 Unit-IV: Chapter 11,8.1,8.2 Unit-V: Chapter 8.5-8.20& 9 Reference Books 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:							
Unit-IV: Chapter 11,8.1,8.2 Unit-V: Chapter 8.5-8.20& 9 Reference Books 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:		•					
Unit-V: Chapter 8.5-8.20& 9 Reference Books 1. James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:			2				
 James A. Freeman, David M. Skapura, Neural Networks Algorithms, Applications and Programming Techniques, Pearson Education, 2003. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources: 							
Techniques, Pearson Education, 2003. 2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:	Reference Bo	oks					
2. Robert J. Schalkoff, Artificial Neural Network, McGraw-Hill International Edition, 1997. Web Resources:	1. James	A. Freeman, David I	M. Skapura, Neu	ıral Networks Alg	orithms, Applica	tions and Pro	gramming
Web Resources:	Techni	ques, Pearson Educ	ation, 2003.				
	2. Robert	J. Schalkoff, Artificia	al Neural Netwo	rk, McGraw-Hill	nternational Edit	tion, 1997.	
1. https://www.ibm.com/topics/neural-networks		Web Resources:					
	1. <u>https:/</u>	/www.ibm.com/top	ics/neural-netw	orks			
2. <u>https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414</u>	2. <u>https:/</u>	/news.mit.edu/2017	7/explained-neu	ral-networks-dee	ep-learning-0414		

3. <u>https://www.udemy.com/course/deep-learning-neural-nets-with-math-derivations-part-1/</u>

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	ogramn Outo	ne Speo come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
C01	3	2	3	1	2	2	1	1	2	2	1	1	3	2	2	2
CO2	3	1	2	3	2	1	2	2	3	1	1	1	2	2	1	3
CO3	3	1	2	2	3	2	1	1	1	1	2	1	3	1	1	2
CO4	2	2	1	2	3	1	1	1	2	2	2	2	2	3	2	2
CO5	1	1	3	1	3	1	1	2	3	2	2	1	3	1	1	3

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Control					
	Theory	4	5	-	-	Elective
Course Intro	duction					
Course Focus	s on: Skill Developr	nent/ Entrepre	eneurship / Emp	oloyability / Re :	search	
Course Outcomes	On completion of t	this course, stu	dents will able			
CO 1:	To recall the basi	1	•		<i>v</i>	
CO 2:	To understand ab				1	
CO 3:	To build the Co systems.	ontrollability C	Frammian Co	nstant coeffici	ent systems	and Adjoint
CO 4:	To apply the con-	cept of steering	g function with	Nonlinear syst	tems.	
CO 5:	To analyze the ouniform stability.	concept of As	ymptotic Stabil	ity of Linear	Systems with	n the help of
CO 6:	To develop the	concept of	Stabilization vi	a linear feedb	ack control,	Controllable
	subspace and Sta	abilization with	n restricted feed	back.		
Unit I:	Observability					[12 Periods]
•	s – Observability Gr	rammian – Cons	tant coefficient s	ystems –Recons	truction kerne	l – Nonlinear
Systems						
Unit II:	Controllability					[12 Periods]
Linear	systems - Controlla	ability Grammia	n – Adjoint syste	ems – Constant c	coefficient sys	tems – steering
	ilinear systems					
Unit III:	Stability					[12 Periods]
•	form Stability – Asy – Nonlinear systems	1	ty of Linear Syste	ems - Linear tim	e varying syst	ems – Perturbed
Unit IV:	Stabiliza	hility				[12 Periods]
	ia linear feedback co		ethod – Controlla	ble subspace – S	Stabilization w	
feedback				I		
Unit V:	Optimal	control.				[12 Periods]
	time varying system		c performance ci	iteria – Matrix I	Riccati equatio	
	ms – Nonlinear Syst	·	e periornanee er	iteria matrix i	decuir equilite	
,	2					
Text Books:						
	ontrol Theory by K.	Balachandran ar	nd I P Dauer Na	rosa New Delhi	1999	
Contents:			ia 011 12 adoi, 1 (a		, 17777.	
Unit -I : Chapt	er 2.					
•	ter 3: Sections: (3.1	- 3.3)				
Unit - III: Chaj						
Unit - IV: Cha	pter 5.					
Unit - V : Chaj	pter 6.					
Reference Bo	ooks					
	near Differential Eq	•				
2 R F Curtain	and A.J.Pritchard, "	"Functional An	alysis and Moder	n Applied Math	ematics Acade	emic Press, New
			•	~ ~		

York, 1977.

3. J.Klamka, "Controllability of Dynamical Systems "Kluwer Academic Publisher, Dordrecht, 1991.

4. D.L.Russell, "Mathematics of Finite Dimensional Control Systems "Marcel Dekker, New York, 1979.

5. E.B. Lee and L. Markus, "Foundations of optimal Control Theory "John Wiley, New York, 1967

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	ogramn Outo		cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
CO1	3	3	2	2	1	1	1	2	1	1	1	2	3	2	2	3
CO2	3	3	2	2	1	1	2	2	1	1	1	3	3	2	1	3
CO3	3	2	2	2	2	1	1	2	1	1	1	3	3	2	1	3
CO4	3	2	3	2	1	1	1	2	1	1	1	3	3	2	1	3
CO5	3	2	2	2	1	1	1	2	1	2	1	3	3	2	2	3

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре								
	Differential Geometry	4	5	-	-	Elective								
Course Intro	duction This course	e provides know	ledge about basi	c concepts of dif	ferential geor	netry, emphasizing								
calculation met	thods and illustratin	g their utility.	-	_	_									
Course Focus	on: Skill Developr	nent/ Entrepre	neurship / Emp	oloyability / Res	earch									
Course Outcomes	On completion of	his course, stu	dents will able											
CO 1:	To recall the conc	ept of Analytic	c representation	through curves	5.									
CO 2:	To understand the	concept of Cu	rvature torsion											
CO 3:	To compare the concepts of Evolutes and Involutes.													
	To apply the First & Second Fundamental form of Normal,													
	To prove the theorems on Mesniers, Eulers of some surfaces.													
	To prove the theorems on Mesniers, Eulers of some surfaces.													
Unit I:						[12 Periods]								
Curves: Analyt	ic representation - A	Arc Length – Os	culation plane.											
Unit II:						[12 Periods]								
Curvature torsi equations.	on – Formulas of Fo	erret - Contact –	Natural equation	ns – Helices – Ge	eneral solution	ns of Natural								
Unit III:						[12 Periods]								
Evolutes and Ir	volutes - Elementa	ry theory of surf	face: Analytic rep	presentation.										
Unit IV:						[12 Periods]								
First fundamen	tal form – Normal,	Tangent plane -	– Developable su	rfaces - Second	fundamental f	form.								

Meusnier's theorem – Euler's Theorem – Dupin's Text Books:	indicatrix –Some surfaces.
Text Books:	
D. Struik, Lectures on Classical Differential Geom	etry, Addison Wesley Publishing Company,
1961.	
Contents:	
Unit I: Chapter 1: Sections:1.0-1.3.	
Unit II: Chapter 1: Sections:1.4-1.10.	
Unit III: Chapter 1,2: Sections:1.11, 2.0,2.1.	
Unit IV: Chapter 2: Sections:2.2-2.5.	
Unit V: Chapter 2: Sections:2.5-2.8.	

1. M. Spivak, "A Comprehensive Introduction to Differential Geometry" Publish or Perish, 1979.

2. J. A. Thorpe, "Elementary Topics in Differential Geometry" Springer-Verlag, 1994

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	ogramn Outo	ne Spec come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
CO1	3	3	2	2	1	1	1	1	2	2	1	2	2	3	2	3
CO2	3	3	2	2	1	1	2	2	2	1	1	2	3	2	2	3
CO3	3	3	2	2	1	1	2	2	2	2	1	3	3	2	2	2
CO4	3	3	2	2	1	1	1	2	2	2	1	2	3	3	2	3
CO5	3	2	2	2	1	1	1	2	2	2	1	1	3	3	2	3

	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Stochastic		F			Elective
	Processes	4	5	-	-	
Course Intro stochastic mod	oductionThis cours delling.	e provides kno	owledge about	stochastic proce	sses and con	cepts pertaining to
Course Focu	s on: Skill Developn	nent/Entrepre	eneurship / Emp	oloyability / Re s	search	
Course						
Outcomes	On completion of t	his course, stu	dents will able			
CO 1:	To remember the	basic concepts	of Stochastic r	rocesses		
CO 2:	To understand the	-	-			
CO 3:	To apply the conc	-		extensions		
CO 4:	To classify the con	-	-		hilities	
CO 5:	To prove the theor	1		ilaitionai proba	onneios.	
Unit I:		cins on queun	ing model .			[12 Periods]
	cesses: Some notions	s - Introduction-	Specification of	stochastic proce	sses – stationa	
Mortingales –	Difference equation: n probabilities.					
Unit II:						[12 Periods]
Unit III:	with denumerable nu	inder of states.				[12 Periods]
and related dis	stributions – Generali	- ations of Daia				
Init IV.	1	zations of Poiss	son process – Bi	th death process		[12 Deviade]
Unit IV: Markov proce			-			[12 Periods]
Markov proce chain – Erlang	sses with discrete sta g process. Markov pro erential equations for	te space (contin ocess with conti	uous time Mark	ov chains)- Rand e: Introduction:	lomization De	rived Markov
Markov proce chain – Erlang	sses with discrete sta g process. Markov pro	te space (contin ocess with conti	uous time Mark	ov chains)- Rand e: Introduction:	lomization De	rived Markov
Markov proce chain – Erlang process – Diff Unit V: Stochastic Pro	sses with discrete sta g process. Markov pro	te space (contin ocess with conti c a wiener proce ystem: General	uous time Mark nuous state spac ess – Kolmogoro concepts – The	ov chains)- Rand e: Introduction: v equation. queuing model M	lomization De Brownian mot	rived Markov tion – Wiener [12 Periods]
Markov proce chain – Erlang process – Diff Unit V: Stochastic Pro Transient beha Text Books:	sses with discrete sta g process. Markov pro erential equations for processes in Queueing s avior of M/M/1 mode	te space (contin ocess with conti c a wiener proce ystem: General el – Birth and de	uous time Mark nuous state spac ess – Kolmogoro concepts – The eath processes - 7	ov chains)- Rand e: Introduction: v equation. queuing model M	lomization De Brownian mot	rived Markov tion – Wiener [12 Periods]
Markov proce chain – Erlang process – Diff Unit V: Stochastic Pro Transient beha Text Books:	sses with discrete sta g process. Markov pro erential equations for processes in Queueing s	te space (contin ocess with conti c a wiener proce ystem: General el – Birth and de	uous time Mark nuous state spac ess – Kolmogoro concepts – The eath processes - 7	ov chains)- Rand e: Introduction: v equation. queuing model M	lomization De Brownian mot	rived Markov tion – Wiener [12 Periods]
Markov proce chain – Erlang process – Diff Unit V: Stochastic Pro Transient beha Text Books:	sses with discrete sta g process. Markov pro erential equations for processes in Queueing s avior of M/M/1 mode	te space (contin ocess with conti c a wiener proce ystem: General el – Birth and de	uous time Mark nuous state spac ess – Kolmogoro concepts – The eath processes - 7	ov chains)- Rand e: Introduction: v equation. queuing model M	lomization De Brownian mot	rived Markov tion – Wiener [12 Periods]
Markov proce chain – Erlang process – Diff Unit V: Stochastic Pro Transient beha Text Books: 1. J.Medhi, St Contents:	sses with discrete sta g process. Markov pro erential equations for processes in Queueing s avior of M/M/1 mode	te space (contin ocess with conti c a wiener proce ystem: General el – Birth and de	uous time Mark nuous state spac ess – Kolmogoro concepts – The eath processes - 7	ov chains)- Rand e: Introduction: v equation. queuing model M	lomization De Brownian mot	rived Markov tion – Wiener [12 Periods]
Markov proce chain – Erlang process – Diff Unit V: Stochastic Pro Transient beha Text Books: 1. J.Medhi, St Contents: Unit I : Chapt	sses with discrete sta g process. Markov pro erential equations for occesses in Queueing s avior of M/M/1 mode	te space (contin ocess with conti a wiener proce ystem: General el – Birth and de Viley Eastern Li	uous time Mark nuous state spac ess – Kolmogoro concepts – The eath processes - 7	ov chains)- Rand e: Introduction: v equation. queuing model M	lomization De Brownian mot	rived Markov tion – Wiener [12 Periods]
Markov proce chain – Erlang process – Diff Unit V: Stochastic Pro Transient beha <u>Text Books:</u> 1. J.Medhi, St Contents: Unit I :Chapt Cha	sses with discrete sta g process. Markov pro erential equations for ocesses in Queueing s avior of M/M/1 mode ochastic Processes, V ter 2: Sections 2.1-2.4	te space (contin ocess with conti c a wiener proce ystem: General el – Birth and de Viley Eastern Li 4,	uous time Mark nuous state spac ess – Kolmogoro concepts – The eath processes - 7	ov chains)- Rand e: Introduction: v equation. queuing model M	lomization De Brownian mot	rived Markov tion – Wiener [12 Periods]
Markov proce chain – Erlang process – Diff Unit V: Stochastic Pro Transient beha <u>Text Books:</u> 1. J.Medhi, St Contents: Unit I :Chapt Cha Unit II :Chap	sses with discrete sta g process. Markov pro erential equations for becesses in Queueing s avior of M/M/1 mode ochastic Processes, V ter 2: Sections 2.1-2.4 apter 3: Sections 3.1,3	te space (contin ocess with conti a wiener proce ystem: General el – Birth and de Viley Eastern Li 4, 3.2	uous time Mark nuous state spac ess – Kolmogoro concepts – The eath processes - 7	ov chains)- Rand e: Introduction: v equation. queuing model M	lomization De Brownian mot	rived Markov tion – Wiener [12 Periods]
Markov proce chain – Erlang process – Diff Unit V: Stochastic Pro Transient beha Text Books: 1. J.Medhi, St Contents: Unit I :Chapt Unit II :Chap Unit III :Chap	sses with discrete sta g process. Markov pro- ferential equations for occesses in Queueing s avior of M/M/1 mode ochastic Processes, V ter 2: Sections 2.1-2.4 apter 3: Sections 3.1,3 ter 3: Sections 3.3 - 3	te space (contin ocess with conti r a wiener proce ystem: General el – Birth and de Viley Eastern Li 4, 3.2 5.8 1.4	uous time Mark nuous state spac ess – Kolmogoro concepts – The eath processes - 7	ov chains)- Rand e: Introduction: v equation. queuing model M	lomization De Brownian mot	rived Markov tion – Wiener [12 Periods]
Markov proce chain – Erlang process – Diff Unit V: Stochastic Pro Transient beha Text Books: 1. J.Medhi, St Contents: Unit I :Chap Unit II :Chap Unit III :Chap Unit IV :Chap	sses with discrete sta g process. Markov pro ferential equations for ocesses in Queueing s avior of M/M/1 mode ochastic Processes, V ter 2: Sections 2.1-2.4 apter 3: Sections 3.1,3 ter 3: Sections 3.3 - 3 ter 4: Sections 4.1 - 4	te space (contin ocess with conti c a wiener proce ystem: General el – Birth and de Viley Eastern Li 4, 3.2 5.8 6.4 1.7	uous time Mark nuous state spac ess – Kolmogoro concepts – The eath processes - 7	ov chains)- Rand e: Introduction: v equation. queuing model M	lomization De Brownian mot	rived Markov tion – Wiener [12 Periods]

Reference Books

1., S.Karlin and M.Taylor, "A First course in Stochastic Process" Second Edition, Academic Press, Newyork (1975).

2.U, Narayan Bhat, "Elements of Applied Stochastic processes " 2nd edition, Wiley, New York (1968)

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	ogramn Outo	ne Spec come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
C01	3	3	3	2	1	1	2	2	3	1	3	2	3	2	2	3
CO2	3	3	3	3	3	2	3	3	3	2	3	3	3	2	3	3
CO3	3	3	3	3	3	2	3	3	3	2	3	3	3	2	3	3
CO4	3	3	3	3	2	1	1	2	2	2	1	2	3	2	2	3
CO5	3	3	3	3	2	1	1	2	2	2	1	2	3	2	2	3

Semester IV

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Fluid	4	5	-	-	Elective
Course Intro	Dynamics					
	provides knowle	dge about flu	ud flow ener	av equation	ronservative	forces and its
applications.	provides knowle	age about ne		by equation, v		Torees and the
Course Focus	on: Skill Developr	nent/ Entrepre	eneurship / Emp	loyability / Res	earch	
Course						i
Outcomes	On completion of	this course, stu	dents will able			
CO 1:	To remember the	basic concept	of fluid flow.			
CO 2:	To understand the	e energy equati	on of flow of a	fluid.		
CO 3:	To apply the conc	** *			ne lift forces	
CO 4:	To analyze viscou	-				
CO 5:	To explain the co	ncept of bound	ary layer.			
Unit I:		_				[12 Periods]
Introdu	ction -Velocity -St	ream line & pat	h line Stream tu	bs - fluid body-	density-press	
	luid -equation of co uation of motion of			inematical and p	mysical -rate	or change of inical
Unit II:						[12 Periods]
	actory Euler's mom reculation -Kelvin's t				neorem -ener	gy equation for in
Unit III:						[12 Periods]
	imensional motion heorem flow past a					Blasius theorem-lift
Unit IV:						[12 Periods]
	s flows- Navier sto der under pressure-					
Unit V:						[12 Periods]
displacement t parallel to sem	ar boundary layer hickness-momentur i infinite plate- Blas	n thickness-kin	etic energy thic	kness-integral ed	·	
Text Books:	Thomson, "Theoreti	and Uridan Dear	miaa" NANA:11-	Company 5th E	dition 1060	Unite Land II)
2.N. Curle aan Company Lii	d H.J. Davies, D Va nited., London ,196	an Nostrand "N	Aodern Fluid Dyr	· · ·		
Contents:						
	Chapter I: Sections Chapter III: Section		omit 3.32, 3.44)			

Unit III: Chapter III: Sections 3.1 - 3.7.5Unit IV: Chapter V: Sections 5.1 - 5.5.5Unit V: Chapter VI: Sections 6.1 - 6.3.1 (omit 6.2.2.)

Reference Books

1. F.D Shanthi Swarup, "Fluid dynamics ", Krishna Prakashan private limit ,2000

2. M.DRaisinghania, "Fluid dynamics with hydro dynamics " S.Chand&co 2003 edition

Mapping of Course Outcome with Programme Outcome and Programme Specific Outcome:

Course Outcome		Programme Outcomes											Pro	ogramn Outo	ne Spec come	cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
CO1	3	2	2	2	1	1	1	1	2	1	1	3	3	2	2	3
CO2	3	2	2	2	1	1	2	2	1	1	1	3	2	2	2	3
CO3	3	2	3	2	1	1	1	1	1	2	2	3	3	2	2	3
CO4	3	2	3	2	1	1	1	1	1	2	2	3	3	2	2	3
CO5	3	2	3	2	1	1	1	1	1	2	2	3	3	2	2	3

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Object Oriented Programming and Python	4	5	-	-	Practical

Course Introduction

Python was designed for readability, and has some similarities to the English language with influence from mathematics.

Course Focus on: Skill Development/ Entrepreneurship / Employability / Research

Course Outcomes	On completion of this course, students will able
CO 1:	Apply the concept of Decision making statements, looping constructs, functions for
	Solving basic programs
CO 2:	To apply python code for Adding Two Numbers
CO 3:	To apply the concept of addition of two matrix.
CO 4:	To analyze recursive functions.
CO 5:	To explain the concept of Fibonacci sequence
	List of Programming
1. V	Trite the Python code for Adding Two Numbers.
2. V	/rite the Python code to find the Area of Triangle.
3. V	/rite the Python code to check whether the given number is Odd or Even.
4. V	Vrite the Python code to Addition of Two Matrix.
5. V	Vrite the Python code to make simple Calculators.

- 6. Write the Python code to check whether the given number is Palindrome number or Not.
- 7. Write a python program that asks the user to enter a series of positive numbers (The user should enter a negative number to signal the end of the series) and the program should display the numbers in order And their sum.
- 8. Write recursive functions for GCD of two integers.
- 9. Write recursive functions for Fibonacci Sequence up to given number n.
- 10. Write recursive functions to display prime number from 2 to n

Text Books:

- 1. MarkSummerfield.—ProgramminginPython3:ACompleteintroductiontothePython Language,Addison-WesleyProfessional,2009.
- 2. MartinC.Brown,—PYTHON:TheCompleteReference||,McGraw-Hill,2001

Reference Books

1.AllenB.Downey, ``ThinkPython:HowtoThinkLikeaComputerScientist 2ndedition, UpdatedforPython3,Shroff/O, ReillyPublishers, 2016

2.GuidovanRossumandFredL.DrakeJr,—AnIntroductiontoPython–Revisedandupdated For Python 3.2,NetworkTheoryLtd., 2011

Course Outcome					Pro	gramr	ne Ou	tcome	es				Pro	ogramn Outo		cific
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
CO1	3	2	2	2	1	1	1	1	2	1	1	3	3	2	2	3
CO2	3	2	2	2	1	1	2	2	1	1	1	3	2	2	2	3
CO3	3	2	3	2	1	1	1	1	1	2	2	3	3	2	2	3
CO4	3	2	3	2	1	1	1	1	1	2	2	3	3	2	2	3
CO5	3	2	3	2	1	1	1	1	1	2	2	3	3	2	2	3

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Mathematical Methods	4	5	-	-	Elective
Course Intro						
	ovides knowledge ab					cations.
Course Focus	on: Skill Developn	nent/Entrepre	eneurship / Emp	oloyability / Re	search	
Course						
Outcomes	On completion of t	his course, stu	dents will be ab	le		
CO 1:	To remember the	basic concept	of integral equa	tions.		
CO 2:	To understand abo	-	<u> </u>			
CO 3:	To apply the conc		* 1		he lift forces	
CO 4:	To analyze viscou	-				
CO 5:	To explain the cor		· · · · ·			
Unit I:	-	÷	• •			[12 Periods]
with separable	Kernel - Volterra in	legral equations		icory.		
Unit II:						[12 Periods]
**	integral equations to	• •	•	0	•	
r''' 1 1	oblame Roundary	value problems	– singular integr	al equations – A	bel Integral ec	juation.
Initial value pr	oblems - Boundary	I	6 6		0	•
Unit III:		•				[12 Periods]
Unit III: Fourier Transf	orms: Fourier Transf	forms, Fourier s	ine and cosine tr		rier transforms	
Unit III: Fourier Transf		forms, Fourier s	ine and cosine tr		rier transforms	
Unit III: Fourier Transf convolution in	orms: Fourier Transf	forms, Fourier s	ine and cosine tr		rier transforms	of derivatives -
Unit III: Fourier Transf convolution in Unit IV:	orms: Fourier Transf tegral – Parseval's T	forms, Fourier s heorem - Soluti	ine and cosine tr	quations by Four	rier transforms	of derivatives - [12 Periods]
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo	orms: Fourier Transf tegral – Parseval's T ms: Properties of H	forms, Fourier s heorem - Soluti ankel Transforr	ine and cosine tr ion of Laplace Eo ns – Hankel tran	quations by Four	rier transforms rier transform. erivatives of fu	of derivatives - [12 Periods] inctions - The
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela	orms: Fourier Transf tegral – Parseval's T ms: Properties of H tion – relation betwe	forms, Fourier s heorem - Soluti ankel Transforr een Fourier and	ine and cosine tr ion of Laplace Eo ns – Hankel tran Hankel transforr	quations by Four	rier transforms rier transform. erivatives of fu	of derivatives - [12 Periods] inctions - The
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela	orms: Fourier Transf tegral – Parseval's T ms: Properties of H	forms, Fourier s heorem - Soluti ankel Transforr een Fourier and	ine and cosine tr ion of Laplace Eo ns – Hankel tran Hankel transforr	quations by Four	rier transforms rier transform. erivatives of fu	of derivatives - [12 Periods] inctions - The
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela	orms: Fourier Transf tegral – Parseval's T ms: Properties of H tion – relation betwe	forms, Fourier s heorem - Soluti ankel Transforr een Fourier and	ine and cosine tr ion of Laplace Eo ns – Hankel tran Hankel transforr	quations by Four	rier transforms rier transform. erivatives of fu	of derivatives - [12 Periods] inctions - The
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V:	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro	forms, Fourier s heorem - Soluti ankel Transforr een Fourier and oblem for a thic	ine and cosine tr ion of Laplace Eo ns – Hankel tran Hankel transforr k plate.	quations by Four sformation of de ns - Axisymmet	rier transforms rier transform. erivatives of fu ric Dirichlet pr	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods]
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro	forms, Fourier s 'heorem - Soluti ankel Transform en Fourier and oblem for a thic	ine and cosine tr ion of Laplace Eo ns – Hankel tran Hankel transforr k plate.	quations by Four sformation of de ns - Axisymmet Lagranges) equa	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods]
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions of	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro	forms, Fourier s 'heorem - Soluti ankel Transform en Fourier and oblem for a thic	ine and cosine tr ion of Laplace Eo ns – Hankel tran Hankel transforr k plate.	quations by Four sformation of de ns - Axisymmet Lagranges) equa	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods]
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions of	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro	forms, Fourier s 'heorem - Soluti ankel Transform en Fourier and oblem for a thic	ine and cosine tr ion of Laplace Eo ns – Hankel tran Hankel transforr k plate.	quations by Four sformation of de ns - Axisymmet Lagranges) equa	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods]
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions o –applications.	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro	forms, Fourier s 'heorem - Soluti ankel Transform en Fourier and oblem for a thic	ine and cosine tr ion of Laplace Eo ns – Hankel tran Hankel transforr k plate.	quations by Four sformation of de ns - Axisymmet Lagranges) equa	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods]
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions o –applications.	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro	forms, Fourier s heorem - Soluti ankel Transforr een Fourier and oblem for a thic nd its properties at variables – va	ine and cosine tr ion of Laplace Ed ns – Hankel tran Hankel transforr k plate.	quations by Four sformation of de ns - Axisymmet Lagranges) equa ns in parametric	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio form	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods] nals dependent of
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions o –applications. Text Books: 1. Linear Integ	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro	forms, Fourier s Theorem - Solution fankel Transform een Fourier and oblem for a thic and its properties at variables – variables – variables	ine and cosine tr ion of Laplace Ed ns – Hankel tran Hankel transforr k plate. – Euler's(Euler triational probler	quations by Four sformation of de ns - Axisymmetr Lagranges) equa ns in parametric	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio form	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods] nals dependent of
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions o –applications. Text Books: 1. Linear Integ 2. The Use of 1	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro riations: Variation an f several independer	forms, Fourier s heorem - Soluti fankel Transforr een Fourier and oblem for a thic nd its properties nt variables – va y and Technique I.N.Sneddon, M	ine and cosine tr ion of Laplace Ed ns – Hankel tran Hankel transforr k plate. – Euler's(Euler triational probler e, R.P.Kanwal, A AcGraw-Hill, Ne	quations by Four sformation of de ns - Axisymmet Lagranges) equa ns in parametric Academic Press, wYork, 1972.	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio form	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods] nals dependent of
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions o –applications. Text Books: 1. Linear Integ 2. The Use of 1	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro	forms, Fourier s heorem - Soluti fankel Transforr een Fourier and oblem for a thic nd its properties nt variables – va y and Technique I.N.Sneddon, M	ine and cosine tr ion of Laplace Ed ns – Hankel tran Hankel transforr k plate. – Euler's(Euler triational probler e, R.P.Kanwal, A AcGraw-Hill, Ne	quations by Four sformation of de ns - Axisymmet Lagranges) equa ns in parametric Academic Press, wYork, 1972.	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio form	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods] nals dependent of
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions o –applications. Text Books: 1. Linear Integ 2. The Use of 1	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro riations: Variation an f several independer	forms, Fourier s heorem - Soluti fankel Transforr een Fourier and oblem for a thic nd its properties nt variables – va y and Technique I.N.Sneddon, M	ine and cosine tr ion of Laplace Ed ns – Hankel tran Hankel transforr k plate. – Euler's(Euler triational probler e, R.P.Kanwal, A AcGraw-Hill, Ne	quations by Four sformation of de ns - Axisymmet Lagranges) equa ns in parametric Academic Press, wYork, 1972.	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio form	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods] nals dependent of
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions o –applications. Text Books: 1. Linear Integ 2. The Use of 1 3. Differential Contents:	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro riations: Variation an f several independer	forms, Fourier s heorem - Soluti ankel Transforr een Fourier and oblem for a thic nd its properties at variables – va y and Technique I.N.Sneddon, N ilus of Variation	ine and cosine tr ion of Laplace Ed ns – Hankel tran Hankel transforr k plate. – Euler's(Euler triational probler e, R.P.Kanwal, A AcGraw-Hill, Ne	quations by Four sformation of de ns - Axisymmet Lagranges) equa ns in parametric Academic Press, wYork, 1972.	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio form	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods] nals dependent of
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions o –applications. Text Books: 1. Linear Integ 2. The Use of 1 3. Differential Contents: Unit I :Chapter	orms: Fourier Transfitegral – Parseval's T rms: Properties of H tion – relation betweenmetric Dirichlet pro riations: Variation and f several independer	forms, Fourier s heorem - Soluti fankel Transform een Fourier and oblem for a thic nd its properties at variables – va y and Technique I.N.Sneddon, N ilus of Variation	ine and cosine tr ion of Laplace Ed ns – Hankel tran Hankel transforr k plate. – Euler's(Euler triational probler e, R.P.Kanwal, A AcGraw-Hill, Ne ns, L.Elsgolts, M	quations by Four sformation of de ns - Axisymmet Lagranges) equa ns in parametric Academic Press, wYork, 1972.	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio form	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods] nals dependent of
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions o –applications. Text Books: 1. Linear Integ 2. The Use of 1 3. Differential Contents: Unit I :Chapter Unit I :Chapter	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwee nmetric Dirichlet pro riations: Variation an f several independer ral Equations Theory (ntegral Transforms, Equations and Calcu	Forms, Fourier s Theorem - Solution Tankel Transform teen Fourier and toblem for a thic and its properties and its properties the variables – va y and Technique I.N.Sneddon, M alus of Variation .10, 2.16. (Bool 5.7, 5.10 – 5.12.	ine and cosine tr ion of Laplace Ed ns – Hankel tran Hankel transforr k plate. – Euler's(Euler riational probler e, R.P.Kanwal, A AcGraw-Hill, Ne ns, L.Elsgolts, M	quations by Four sformation of de ns - Axisymmet Lagranges) equa ns in parametric Academic Press, wYork, 1972.	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio form	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods] nals dependent of
Unit III: Fourier Transf convolution in Unit IV: Hankel transfo Parseval's rela space – Axisyn Unit V: Calculus of va the functions o –applications. Text Books: 1. Linear Integ 2. The Use of 1 3. Differential Contents: Unit I :Chapter Unit II :Chapter Unit II :Chapter	orms: Fourier Transf tegral – Parseval's T rms: Properties of H tion – relation betwe nmetric Dirichlet pro raitions: Variation and f several independer ral Equations Theory (ntegral Transforms, Equations and Calcu	Forms, Fourier s Theorem - Solution ankel Transform een Fourier and oblem for a thic and its properties nt variables – var y and Technique I.N.Sneddon, M alus of Variation .10, 2.16. (Bool 5.7, 5.10 – 5.12. er 3: 3.3- 3.4. (J	ine and cosine tr ion of Laplace Ed ns – Hankel tran Hankel transforr k plate. – Euler's(Euler triational probler e, R.P.Kanwal, A AcGraw-Hill, Ne ns, L.Elsgolts, M (Book 1) Book 2)	quations by Four sformation of de ns - Axisymmet Lagranges) equa ns in parametric Academic Press, wYork, 1972.	rier transforms rier transform. erivatives of fu ric Dirichlet pr ation – functio form	of derivatives - [12 Periods] inctions - The roblem for a half [12 Periods] nals dependent of

Reference Books

1. H.T. Davis – Introduction to nonlinear differential and integral equations, Dover Publications, 1962.

2. A.H. Nayfeh – Perturbation Methods, John Wiley & sons New York, 1973

3. Don Hong, J. Wang and R. Gardner. Real analysis with introduction to wavelets and applications, Academic Press Elsevier (2006)

Course Outcome					Pro	gramr	ne Ou	tcome	es				Programme Specifi Outcome			
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4
CO1	3	3	2	2	3	1	2	1	2	2	1	2	3	3	2	3
CO2	3	3	2	2	2	2	1	1	1	1	1	2	3	3	2	3
CO3	3	3	2	2	2	1	1	1	1	1	1	2	3	3	3	3
CO4	3	3	3	2	2	1	1	1	2	2	1	2	3	3	3	3
CO5	3	3	3	2	2	1	1	1	1	2	1	1	3	3	3	3

	Course Title	Credit	Lecture	Tutorial	Practical	Туре
	Machine	4	5	-	-	Elective
Course Intro	Learning					l
	but the basics of mac	hine learning				
	on: Skill Developm		eurship / Emplo	oyability / Rese	earch	
Course Outcomes	On completion of t	this course, stu	dents will be ab	le		
CO 1:	Understanding of model selection, r			challenges o	f machine le	earning: data,
CO 2:	Understanding of approaches.	<u> </u>		ses of many j	popular mac	hine learning
CO 3:	Explain about the reduction	ne concepts o	f computation	al learning th	eory and d	imensionality
CO 4:	Appreciate the u Learning algorith			1		
CO 5:	Explain about the	1	<u> </u>		1	- U
Unit I:	1	11	6, 4		<u> </u>	[12 Periods]
	thmic models of lear	rning, Learning	classifiers. funct	ions, relations.	grammars. pro	
value function	s, behaviors and progeth frameworks.	0. 0			· · •	
Unit II:						[12 Periods]
	eter Estimation, suff		decision trees, n	eural networks,	support vector	r machines,
D .	1 1 C 1			,	support rector	,
			um models; Mark	ov and Hidden	Markov mode	ls, probabilistic
relational mod	orks, bag of words c els, association rules			ov and Hidden	Markov mode	ls, probabilistic emble classifiers.
relational mod Unit III:	els, association rules	s, nearest neighb	oor classifiers, loo	tov and Hidden l cally weighted re	Markov mode egression, ens	ls, probabilistic emble classifiers. [12 Periods]
relational mod Unit III: Computationa	els, association rules	s, nearest neight istake bound an	or classifiers, loo alysis, sample co	ov and Hidden cally weighted ro mplexity analys	Markov mode egression, ens is, VC dimens	ls, probabilistic emble classifiers. [12 Periods] sion, Occam
relational mod Unit III: Computational	els, association rules Learning theory, m acy and confidence	s, nearest neight istake bound an	or classifiers, loo alysis, sample co	ov and Hidden cally weighted ro mplexity analys	Markov mode egression, ens is, VC dimens	ls, probabilistic emble classifiers. [12 Periods] sion, Occam
relational mod Unit III: Computational learning, accur selection and v	els, association rules Learning theory, m acy and confidence	s, nearest neight istake bound an	or classifiers, loo alysis, sample co	ov and Hidden cally weighted ro mplexity analys	Markov mode egression, ens is, VC dimens	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature
relational mod Unit III: Computational learning, accur selection and v Unit IV:	els, association rules Learning theory, m acy and confidence visualization	s, nearest neight istake bound an boosting, Dime	oor classifiers, loo alysis, sample co nsionality reduct	ov and Hidden cally weighted re omplexity analys ion: Principal co	Markov mode egression, ens is, VC dimens omponent Ana	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods]
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised	els, association rules Learning theory, m acy and confidence	s, nearest neight istake bound an boosting, Dimer g, mixture mode	or classifiers, loo alysis, sample co nsionality reduct	ov and Hidden cally weighted ro omplexity analys ion: Principal co ering, hierarchic	Markov mode egression, ens is, VC dimens omponent Ana cal clustering,	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei	els, association rules Learning theory, m acy and confidence visualization	s, nearest neight istake bound an boosting, Dimer g, mixture mode	or classifiers, loo alysis, sample co nsionality reduct	ov and Hidden cally weighted ro omplexity analys ion: Principal co ering, hierarchic	Markov mode egression, ens is, VC dimens omponent Ana cal clustering,	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge.
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei Unit V:	els, association rules Learning theory, m acy and confidence visualization	s, nearest neight istake bound an boosting, Dimer g, mixture mode ; Learning from	or classifiers, loo alysis, sample co nsionality reduct ls, k-means clust heterogeneous,	ov and Hidden cally weighted re omplexity analys ion: Principal co ering, hierarchic distributed, data	Markov mode egression, ens is, VC dimens omponent Ana cal clustering, and knowleds	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge. [12 Periods]
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei Unit V: Selected applie	els, association rules	s, nearest neight istake bound an boosting, Dimer g, mixture mode ; Learning from	oor classifiers, loo alysis, sample co nsionality reduct ls, k-means clust heterogeneous,	ov and Hidden cally weighted re- omplexity analys ion: Principal co ering, hierarchic distributed, data	Markov mode egression, ens is, VC dimens omponent Ana cal clustering, and knowledg ognition, prog	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge. [12 Periods] gram synthesis, tex
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei Unit V: Selected applic and language	els, association rules	s, nearest neight istake bound an boosting, Dimer g, mixture mode ; Learning from ng, automated kn based informati	oor classifiers, loo alysis, sample co nsionality reduct ls, k-means clust heterogeneous,	ov and Hidden cally weighted re- omplexity analys ion: Principal co ering, hierarchic distributed, data	Markov mode egression, ens is, VC dimens omponent Ana cal clustering, and knowledg ognition, prog	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge. [12 Periods] gram synthesis, tex
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei Unit V: Selected applic and language informatics an	els, association rules	s, nearest neight istake bound an boosting, Dimer g, mixture mode ; Learning from ng, automated kn based informati	oor classifiers, loo alysis, sample co nsionality reduct ls, k-means clust heterogeneous,	ov and Hidden cally weighted re- omplexity analys ion: Principal co ering, hierarchic distributed, data	Markov mode egression, ens is, VC dimens omponent Ana cal clustering, and knowledg ognition, prog	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge. [12 Periods] gram synthesis, tex
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei Unit V: Selected applic and language informatics an Text Books:	els, association rules	s, nearest neight istake bound an boosting, Dimer g, mixture mode ; Learning from ng, automated ki based informati logy.	oor classifiers, loo alysis, sample co nsionality reduct ls, k-means clust heterogeneous, nowledge acquisi on systems, hum	ov and Hidden i cally weighted re- omplexity analys ion: Principal co ering, hierarchic distributed, data tition, pattern rec aan computer int	Markov mode egression, ens is, VC dimens omponent Ana cal clustering, and knowleds ognition, prog teraction, sem	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge. [12 Periods] gram synthesis, tex
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei Unit V: Selected applic and language informatics an Text Books: 1 Bishop,C.(20	els, association rules	s, nearest neight istake bound an boosting, Dimer g, mixture mode ; Learning from ng, automated ki based informati logy.	oor classifiers, loo alysis, sample co nsionality reduct ls, k-means clust heterogeneous, nowledge acquisi on systems, hum	ov and Hidden i cally weighted re- omplexity analys ion: Principal co ering, hierarchic distributed, data tition, pattern rec aan computer int	Markov mode egression, ens is, VC dimens omponent Ana cal clustering, and knowleds ognition, prog teraction, sem	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge. [12 Periods] gram synthesis, tex
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei Unit V: Selected applie and language informatics an Text Books: 1 Bishop,C.(20	els, association rules	s, nearest neight istake bound an boosting, Dimer g, mixture mode ; Learning from ng, automated ki based informati logy. tionandMachine	or classifiers, loo alysis, sample co nsionality reduct ls, k-means clust heterogeneous, nowledge acquisi on systems, hum Learning.Berlin:	ov and Hidden i cally weighted re- omplexity analys ion: Principal co ering, hierarchic distributed, data ition, pattern rec an computer int Springer-Verlag	Markov mode egression, ens is, VC dimens omponent Ana cal clustering, and knowleds ognition, prog teraction, sem	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge. [12 Periods] gram synthesis, tex antic web, and Bio
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei Unit V: Selected applic and language informatics an Text Books: 1 Bishop,C.(20 Reference Bo	els, association rules	s, nearest neight istake bound an boosting, Dimer g, mixture mode ; Learning from ag, automated kn based informati logy. tionandMachine	oor classifiers, loo alysis, sample co nsionality reduct ls, k-means clust heterogeneous, o nowledge acquisi on systems, hum Learning.Berlin: ce:AModernApp	ov and Hidden i cally weighted re- omplexity analys- ion: Principal co- ering, hierarchic distributed, data tion, pattern rec- an computer int Springer-Verlag roach.2ndEditio	Markov mode egression, ens is, VC dimens omponent Ana cal clustering, and knowledg ognition, prog teraction, sem g.	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge. [12 Periods] gram synthesis, tex antic web, and Bio
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei Unit V: Selected applie and language informatics an Text Books: 1 Bishop,C.(20 Reference Bo 1 Russel,S.And 2. Baldi,P.,Fra	els, association rules	s, nearest neight istake bound an boosting, Dimer g, mixture mode ; Learning from ng, automated ki based informati logy. tionandMachine tificialIntelligen 202).Bioinforma	or classifiers, loo alysis, sample co nsionality reduct ls, k-means clust heterogeneous, nowledge acquisi on systems, hum Learning.Berlin: ce:AModernApp ttics:AMachineL	ov and Hidden i cally weighted re- omplexity analys- ion: Principal co- ering, hierarchic distributed, data tion, pattern rec- nan computer int Springer-Verlag roach.2ndEditio earningApproac	Markov mode egression, ens is, VC dimens omponent Ana cal clustering, and knowledg ognition, prog teraction, sem g.	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge. [12 Periods] gram synthesis, text antic web, and Bio
relational mod Unit III: Computational learning, accur selection and v Unit IV: Unsupervised clustering, Rei Unit V: Selected applie and language informatics an Text Books: 1 Bishop,C.(20 Reference Bo 1 Russel,S.And 2. Baldi,P.,Fra	els, association rules	s, nearest neight istake bound an boosting, Dimer g, mixture mode ; Learning from ng, automated ki based informati logy. tionandMachine tificialIntelligen 202).Bioinforma	or classifiers, loo alysis, sample co nsionality reduct ls, k-means clust heterogeneous, a nowledge acquisi on systems, hum Learning.Berlin: ce:AModernApp ntics:AMachineL	ov and Hidden i cally weighted re- omplexity analys- ion: Principal co- ering, hierarchic distributed, data tion, pattern rec- nan computer int Springer-Verlag roach.2ndEditio earningApproac	Markov mode egression, ens is, VC dimens omponent Ana cal clustering, and knowleds ognition, prog teraction, sem g. n, NewYork:P th. Cambridg Specific Outo Prog	ls, probabilistic emble classifiers. [12 Periods] sion, Occam lysis, feature [12 Periods] distributional ge. [12 Periods] gram synthesis, text antic web, and Bio rentice-Hall. ge,MA:MITPress.

Rathinam College of Arts and Science (Autonomous), Coimbatore-21. For candidates admitted in M.Sc. Mathematics in the academic year 2024-2025 and Onwards Page 55 of 57 Regulations 2024

CO1	3	3	2	2	3	1	2	1	2	2	1	2	3	3	2	3
CO2	3	3	2	2	2	2	1	1	1	1	1	2	3	3	2	3
CO3	3	3	2	2	2	1	1	1	1	1	1	2	3	3	3	3
CO4	3	3	3	2	2	1	1	1	2	2	1	2	3	3	3	3
CO5	3	3	3	2	2	1	1	1	1	2	1	1	3	3	3	3

Course Code	Course Title	Credit	Lecture	Tutorial	Practical	Туре						
	Finite Elements Method	4	5	-	-	Elective						
Course Intro	luction											
Course Focus	on: Skill Developr	nent/ Entrepre	neurship / Emp	loyability / Res	earch							
Course												
Outcomes	On completion of	this course, stu	dents will									
	Summarize the ba	sics of finite e	lement formula	tion								
CO 2:	Apply finite elem	ent formulation	ns to solve one	dimensional Pr	oblems							
CO 3:	Apply finite element formulations to solve two dimensional scalar Problems.											
CO 4:	Apply finite element method to solve two dimensional Vector problems.											
CO 5:	Apply finite elemer	nt method to sol	ve problems on	iso parametric el	lement and							
	dynamic Problems.											
Unit I:	INTRODUCTION					[12 Periods]						
Discrete and co	ground — Mathem ontinuous models – mulation of Bounda	- Boundary, Init	ial and Eigen Val	ue problems– W	eighted Resid	lual Methods —						
Unit II:	ONE-DIMENSION	AL PROBLEMS				[12 Periods]						
Derivation of S problems from	al Second Order Ec hape functions and solid mechanics an Juation –Transverse	Stiffness matric d heat transfer.	es and force vec Longitudinal vib	tors- Assembly or ration frequenci	of Matrices —	Solution of						
Unit III:	TWO DIM	IENSIONAL SCAL	AR VARIABLE PF	ROBLEMS		[12 Periods]						
formulation —	2D Equations involv Triangular element termal problems —	s — Shape func	tions and eleme	nt matrices and v	vectors. Appli	cation to Field						
Unit IV:	TWO DIMENSION	AL VECTOR VAR	IABLE PROBLEM	S		[12 Periods]						
-	quations of elasticity — Plane stress, plane strain and axisymmetric problems — Body forces and temperature ffects — Stress calculations — Plate and shell elements.											
Unit V:	ISOPARAMETRIC	FORMULATION				[12 Periods]						
Natural co-ordinate systems — Isoparametric elements — Shape functions for iso parametric elements — One and two dimensions — Serendipity elements — Numerical integration and application to plane stress problems — Matrix solution techniques — Solutions Techniques to Dynamic problems — Introduction to Analysis Software. ME8692 Finite Element Analysis Text Books:												

Reddy. J.N., "An Introduction to the Finite Element Method", 3rd Edition, Tata McGraw-Hill, 2005

2. Seshu, P, "Text Book of Finite Element Analysis", Prentice-Hall of India Pvt. Ltd., New Delhi, 2007.

Reference Books

Bhatti Asghar M, "Fundamental Finite Element Analysis and Applications", John Wiley & Sons,

2005 (Indian Reprint 2013)*

2. Chandrupatla & Belagundu, "Introduction to Finite Elements in Engineering", 3rd Edition,

Prentice Hall College Div, 1990

3. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002

4. Rao, S.S., "The Finite Element Method in Engineering", 3rd Edition, Butterworth Heinemann,

2004

5. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and

Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.

ME8694

Course Outcome	Programme Outcomes													Programme Specific Outcome			
	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2	PSO3	PSO4	
CO1	3	3	2	2	3	1	2	1	2	2	1	2	3	3	2	3	
CO2	3	3	2	2	2	2	1	1	1	1	1	2	3	3	2	3	
CO3	3	3	2	2	2	1	1	1	1	1	1	2	3	3	3	3	
CO4	3	3	3	2	2	1	1	1	2	2	1	2	3	3	3	3	
CO5	3	3	3	2	2	1	1	1	1	2	1	1	3	3	3	3	